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PREFACE 

Rheology, defined as the science of deformation andflow, is now recognised as an 
important field of scientific study. A knowledge of the subject is essential for 
scientists employed in many industries, including those involving plastics, paints, 
printing inks, detergents, oils, etc. Rheology is also a respectable scientific discipline 
in its own right and may be studied by academics for their own esoteric reasons, 
with no major industrial motivation or input whatsoever. 

The growing awareness of the importance of rheology has spawned a plethora of 
books on the subject, many of them of the highest class. It is therefore necessary at 
the outset to justify the need for yet another book. 

Rheology is by common consent a difficult subject, and some of the necessary 
theoretical components are often viewed as being of prohibitive complexity by 
scientists without a strong mathematical background. There are also the difficuities 
inherent in any multidisciplinary science, like rheology, for those with a specific 
training e.g. in chemistry. Therefore, newcomers to the field are sometimes discour- 
aged and for them the existing texts on the subject, some of whlch are outstanding, 
are of limited assistance on account of their depth of detail and highly mathematical 
nature. 

For these reasons, it is our considered judgment after many years of experience in 
industry and academia, that there still exists a need for a modern introductoly text 
on the subject; one which will provide an overview and at the same time ease 
readers into the necessary complexities of the field, pointing them at the same time 
to the more detailed texts on specific aspects of the subject. 

In keeping with our overall objective, we have purposely (and with some 
difficulty) minimised the mathematical content of the earlier chapters and relegated 
the highly mathematical chapter on Theoretical Rheology to the end of the book. A 
glossary and bibliography are included. 

A major component of the anticipated readership will therefore be made up of 
newcomers to the field, with at least a first degree or the equivalent in some branch 
of science or engineering (mathematics, physics, chemistry, chemical or mechanical 
engineering, materials science). For such, the present book can be viewed as an 
important (first) stepping stone on the journey towards a detailed appreciation of 
the subject with Chapters 1-5 covering foundational aspects of the subject and 
Chapters 6-8 more specialized topics. We certainly do not see ourselves in competi- 
tion with existing books on rheology, and if this is not the impression gained on 
reading the present book we have failed in our purpose. We shall judge the success 



or otherwise of our venture by the response of newcomers to the field, especially 
those without a strong mathematical background. We shall not be unduly disturbed 
if long-standing rheologists find the book superficial, although we shall be deeply 
concerned if it is concluded that the book is unsound. 

We express our sincere thanks to all our colleagues and friends who read earlier 
drafts of various parts of the text and made useful suggestions for improvement. 

Mr Robin Evans is to be thanked for his assistance in preparing the figures and 
Mrs Pat Evans for her tireless assistance in typing the final manuscript. 

H.A. Barnes 
J.F. Hutton 
K. Walters 
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CHAPTER I 

INTRODUCTION 

1.1 What is rheology? 

The term 'Rheology' * was invented by Professor Bingham of Lafayette College, 
Easton, PA, on the advice of a colleague, the Professor of Classics. It means the 
study of the deformation and flow of matter. This definition was accepted when the 
American Society of Rheology was founded in 1929. That first meeting heard papers 
on the properties and behaviour of such widely differing materials as asphalt, 
lubricants, paints, plastics and rubber, which gives some idea of the scope of the 
subject and also the numerous scientific disciplines which are likely to be involved. 
Nowadays, the scope is even wider. Significant advances have been made in 
biorheology, in polymer rheology and in suspension rheology. There has also been a 
significant appreciation of the importance of rheology in the chemical processing 
industries. Opportunities no doubt exist for more extensive applications of rheology 
in the biotechnological industries. There are now national Societies of Rheology in 
many countries. The British Society of Rheology, for example, has over 600 
members made up of scientists from widely differing backgrounds, including 
mathematics, physics, engineering and physical chemistry. In many ways, rheology 
has come of age. 

1.2 Historical perspective 

In 1678, Robert Hooke developed his "True Theory of Elasticity". He proposed 
that "the power of any spring is in the same proportion with the tension thereof", 
i.e. if you double the tension you double the extension. This forms the basic premise 
behind the theory of classical (infinitesimal-strain) elasticity. 

At the other end of the spectrum, Isaac Newton gave attention to liquids and in 
the "Principia" published in 1687 there appears the following hypothesis associated 
with the steady simple shearing flow shown in Fig. 1.1: "The resistance which arises 
from the lack of slipperiness of the parts of the liquid, other things being equal, is 
proportional to the velocity with which the parts of the liquid are separated from 
one another". 

* Definitions of terms in single quotation marks are included in the Glossary. 

I 
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Fig. 1.1 Showing two parallel planes, each of area A ,  at y = 0 and y = d ,  the intervening space being 
filled with sheared liquid. The upper plane moves with relative velocity U and the lengths of the arrows 
between the planes are proportional to the local velocity u, in the liquid. 

This lack of slipperiness is what we now call 'viscosity'. It is synonymous with 
"internal friction" and is a measure of "resistance to flow". The force per unit area 
required to produce the motion is F/A and is denoted by a and is proportional to 
the 'velocity gradient' (or 'shear rate') U / d ,  i.e. ifyou double the force you double the 
velocity gradient. The constant of proportionality .rl is called the coefficient of 
viscosity, i.e. 

(It is usual to write + for the shear rate U / d ;  see the Glossary.) 
Glycerine and water are common liquids that obey Newton's postulate. For 

glycerine, the viscosity in SI units is of the order of 1 Pas, whereas the viscosity of 
water is about 1 mPa.s, i.e. one thousand times less viscous. 

Now although Newton introduced his ideas in 1687, it was not until the 
nineteenth century that Navier and Stokes independently developed a consistent 
three-dimensional theory for what is now called a Newtonian viscous liquid. The 
governing equations for such a fluid are called the Navier-Stokes equations. 

For the simple shear illustrated in Fig. 1.1, a 'shear stress' a results in 'flow'. In 
the case of a Newtonian liquid, the flow persists as long as the stress is applied. In 
contrast, for a Hookean solid, a shear stress a applied to the surface y = d results in 
an instantaneous deformation as shown in Fig. 1.2. Once the deformed state is 
reached there is no further movement, but the deformed state persists as long as the 
stress is applied. 

The angle y is called the 'strain' and the relevant 'constitutive equation' is 

a = Gy,  (1 -2) 

where G is referred to as the 'rigidity modulus'. 

Fig. 1.2 The result of the application of a shear stress o to a block of Hookean solid (shown in section). 
On the application of the stress the material section ABCD is deformed and becomes A'B'C'D'. 



1.21 Historical perspectiwe 3 

Three hundred years ago everything may have appeared deceptively simple to 
Hooke and Newton, and indeed for two centuries everyone was satisfied with 
Hooke's Law for solids and Newton's Law for liquids. In the case of liquids, 
Newton's law was known to work well for some common liquids and people 
probably assumed that it was a universal law like his more famous laws about 
gravitation and motion. It was in the nineteenth century that scientists began to 
have doubts (see the review article by Markovitz (1968) for fuller details). In 1835, 
Wilhelm Weber carried out experiments on silk threads and found out that they 
were not perfectly elastic. "A longitudinal load", he wrote, "produced an immediate 
extension. This was followed by a further lengthening with time. On removal of the 
load an immediate contraction took place, followed by a gradual further decrease in 
length until the original length was reached". Here we have a solid-like material, 
whose behaviour cannot be described by Hooke's law alone. There are elements of 
flow in the described deformation pattern, which are clearly associated more with a 
liquid-like response. We shall later introduce the term ' viscoelasticity' to describe 
such behaviour. 

So far as fluid-like materials are concerned, an influential contribution came in 
1867 from a paper entitled "On the dynamical theory of gases" which appeared in 
the "Encyclopaedia Britannica ". The author was James Clerk Maxwell. The paper 
proposed a mathematical model for a fluid possessing some elastic properties (see 
53.3). 

The definition of rheology already given would allow a study of the behaviour of 
all matter, including the classical extremes of Hookean elastic solids and Newtonian 
viscous liquids. However, these classical extremes are invariably viewed as being 
outside the scope of rheology. So, for example, Newtonian fluid mechanics based on 
the Navier-Stokes equations is not regarded as a branch of rheology and neither is 
classical elasticity theory. The over-riding concern is therefore with materials be- 
tween these classical extremes, like Weber's silk threads and Maxwell's elastic fluids. 

Returning to the historical perspective, we remark that the early decades of the 
twentieth century saw only the occasional study of rheological interest and, in 
general terms, one has to wait until the second World War to see rheology emerging 
as a force to be reckoned with. Materials used in flamethrowers were found to be 
viscoelastic and this fact generated its fair share of original research during the War. 
Since that time, interest in the subject has mushroomed, with the emergence of the 
synthetic-fibre and plastics-processing industries, to say nothing of the appearance 
of liquid detergents, multigrade oils, non-drip paints and contact adhesives. There 
have been important developments in the pharmaceutical and food industries and 
modem medical research involves an important component of biorheology. The 
manufacture of materials by the biotechnological route requires a good understand- 
ing of the rheology involved. All these developments and materials help to illustrate 
the substantial relevance of rheology to life in the second half of the twentieth 
century. 
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1.3 The importance of non-linearity 

So far we have considered elastic behaviour and viscous behaviour in terms of the 
laws of Hooke and Newton. These are linear laws, which assume direct propor- 
tionality between stress and strain, or strain rate, whatever the stress. Further, by 
implication, the viscoelastic behaviour so far considered is also linear. Within this 
linear framework, a wide range of rheological behaviour can be accommodated. 
However, this framework is very restrictive. The range of stress over which materials 
behave linearly is invariably limited, and the limit can be quite low. In other words, 
material properties such as rigidity modulus and viscosity can change with the 
applied stress, and the stress need not be high. The change can occur either 
instantaneously or over a long period of time, and it can appear as either an increase 
or a decrease of the material parameter. 

A common example of non-linearity is known as 'shear-thinning' (cf. 92.3.2). 
This is a reduction of the viscosity with increasing shear rate in steady flow. The 
toothpaste which sits apparently unmoving on the bristles of the toothbrush is easily 
squeezed from the toothpaste tube-a familiar example of shear-thinning. The 
viscosity changes occur almost instantaneously in toothpaste. For an example of 
shear-thinning which does not occur instantaneously we look to non-drip paint. To 
the observer equipped with no more than a paintbrush the slow recovery of viscosity 
is particularly noticeable. The special term for time-dependent shear-thinning fol- 
lowed by recovery is 'thixotropy', and non-drip paint can be described as thixo- 
tropic. Shear-thinning is just one manifestation of non-linear behaviour, many 
others could be cited, and we shall see during the course of this book that it is 
difficult to make much headway in the understanding of rheology without an 
appreciation of the general importance of non-linearity. 

1.4 Solids and liquids 

It should now be clear that the concepts of elasticity and viscosity need to be 
qualified since real materials can be made to display either property or a combina- 
tion of both simultaneously. Which property dominates, and what the values of the 
parameters are, depend on the stress and the duration of application of the stress. 

The reader will now ask what effect these ideas will have on the even more 
primitive concepts of solids and liquids. The answer is that in a detailed discussion 
of real materials these too will need to be qualified. When we look around at home, 
in the laboratory, or on the factory floor, we recognise solids or liquids by their 
response to low stresses, usually determined by gravitational forces, and over a 
human, everyday time-scale, usually no more than a few minutes or less than a few 
seconds. However, if we apply a very wide range of stress over a very wide spectrum 
of time, or frequency, using rheological apparatus, we are able to observe liquid-like 
properties in solids and solid-like properties in liquids. It follows therefore that 
difficulties can, and do, arise when an attempt is made to label a given materia1 as a 
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solid or a liquid. In fact, we can go further and point to inadequacies even when 
qualifying terms are used. For example, the term plastic-rigid solid used in 
structural engineering to denote a material which is rigid (inelastic) below a 'yield 
stress' and yielding indefinitely above this stress, is a good approximation for a 
structural component of a steel bridge but it is nevertheless still limited as a 
description for steel. It is much more fruitful to classify rheological behaviour. Then 
it will be possible to include a given material in more than one of these classifica- 
tions depending on the experimental conditions. 

A great advantage of this procedure is that it allows for the mathematical 
description of rheology as the mathematics of a set of behaviours rather than of a 
set of materials. The mathematics then leads to the proper definition of rheological 
parameters and therefore to their proper measurement (see also 93.1). 

To illustrate these ideas, let us take as an example, the silicone material that is 
nicknamed "Bouncing Putty". It is very viscous but it will eventually find its own 
level when placed in a container-given sufficient time. However, as its name 
suggests, a ball of it will also bounce when dropped on the floor. It is not difficult to 
conclude that in a slow flow process, occurring over a long time scale, the putty 
behaves like a liquid-it finds its own level slowly. Also when it is extended slowly 
it shows ductile fracture-a liquid characteristic. However, when the putty is 
extended quickly, i.e. on a shorter time scale, it shows brittle fracture-a solid 
characteristic. Under the severe and sudden deformation experienced as the putty 
strikes the ground, it bounces-another solid characteristic. Thus, a given material 
can behave like a solid or a liquid depending on the time scale of the deformation 
process. 

The scaling of time in rheology is achieved by means of the 'Deborah number', 
which was defined by Professor Marcus Reiner, and may be introduced as follows. 

Anyone with a knowledge of the QWERTY keyboard will know that the letter 
"R" and the letter "T" are next to each other. One consequence of this is that any 
book on rheology has at least one incorrect reference to theology. (Hopefully, the 
present book is an exception!). However, this is not to say that there is no 
connection between the two. In the fifth chapter of the book of Judges in the Old 
Testament, Deborah is reported to have declared, "The mountains flowed before 
the Lord.. . ". On the basis of this reference, Professor Reiner, one of the founders 
of the modern science of rheology, called his dimensionless group the Deborah 
number De. The idea is that everything flows if you wait long enough, even the 
mountains! 

where T is a characteristic time of the deformation process being observed and T is 
a characteristic time of the material. The time 7 is infinite for a Hookean elastic 
solid and zero for a Newtonian viscous liquid. In fact, for water in the liquid state 7 

is typically 10-l2 s whilst for lubricating oils as they pass through the high pressures 
encountered between contacting pairs of gear teeth 7 can be of the order of lop6  s 
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and for polymer melts at the temperatures used in plastics processing 7 may be as 
high as a few seconds. There are therefore situations in which these liquids depart 
from purely viscous behaviour and also show elastic properties. 

High Deborah numbers correspond to solid-like behaviour and low Deborah 
numbers to liquid-like behaviour. A material can therefore appear solid-like either 
because it has a very long characteristic time or because the kleformation process we 
are using to study it is very fast. Thus, even mobile liquids with low characteristic 
times can behave like elastic solids in a very fast deformation process. This 
sometimes happens when lubricating oils pass through gears. 

Notwithstanding our stated decision to concentrate on material behaviour, it may 
still be helpful to attempt definitions of precisely what we mean by solid and liquid, 
since we do have recourse to refer to such expressions in this book. Accordingly, we 
define a solid as a material that will not continuously change its shape when subjected 
to a given stress, i.e. for a given stress there will be a fixed final deformation, which 
may or may not be reached instantaneously on application of the stress. We define a 
liquid as a material that will continuously change its shape (i.e. will flow) when 
subjected to a given stress, irrespective of how small that stress may be. 

The term ' viscoelasticity' is used to describe behaviour which falls between the 
classical extremes of Hookean elastic response and Newtonian viscous behaviour. In 
terms of ideal material response, a solid material with viscoelasticity is invariably 
called a 'viscoelastic solid' in the literature. In the case of liquids, there is more 
ambiguity so far as terminology is concerned. The terms 'viscoelastic liquid', 
'elastico-viscous liquid', 'elastic liquid' are all used to describe a liquid showing 
viscoelastic properties. In recent years, the term 'memory fluid' has also been used 
in this connection. In this book, we shall frequently use the simple term elastic 
liquid. 

Liquids whose behaviour cannot be described on the basis of the Navier-Stokes 
equations are called 'non-Newtonian liquids'. Such liquids may or may not possess 
viscoelastic properties. This means that all viscoelastic liquids are non-Newtonian, 
but the converse is not true: not all non-Newtonian liquids are viscoelastic. 

1.5 Rheology is a difficult subject 

By common consent, rheology is a difficult subject. This is certainly the usual 
perception of the newcomer to the field. Various reasons may be put forward to 
explain this view. For example, the subject is interdisciplinary and most scientists 
and engineers have to move away from a possibly restricted expertise and develop a 
broader scientific approach. The theoretician with a background in continuum 
mechanics needs to develop an appreciation of certain aspects of physical chemistry, 
statistical mechanics and other disciplines related to microrheological studies to 
fully appreciate the breadth of present-day rheological knowledge. Even more 
daunting, perhaps, is the need for non-mathematicians to come to terms with at 
least some aspects of non-trivial mathematics. A cursory glance at most text books 
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on rheology would soon convince the uninitiated of this. Admittedly, the apparent 
need of a working knowledge of such subjects as functional analysis and general 
tensor analysis is probably overstated, but there is no doubting the requirement of 
some working knowledge of modern mathematics. This book is an introduction to 
rheology and our stated aim is to explain any mathematical complication to the 
nonspecialist. We have tried to keep to this aim throughout most of the book (until 
Chapter 8, which is written for the more mathematically minded reader). 

At this point, we need to justify the introduction of the indicial notation, which is 
an essential mathematical tool in the development of the subject. The concept of 
pressure as a (normal) force per unit area is widely accepted and understood; it is 
taken for granted, for example, by TV weather forecasters who are happy to display 
isobars on their weather maps. Pressure is viewed in these contexts as a scalar 
quantity, but the move to a more sophisticated (tensor) framework is necessary 
when viscosity and other rheological concepts are introduced. 

We consider a small plane surface of area As drawn in a deforming medium (Fig. 
1.3). 

Let n,, n, and n, represent the components of the unit normal vector to the 
surface in the x, y, z directions, respectively. These define the orientation of As in 
space. The normal points in the direction of the +ve side of the surface. We say 
that the material on the + ve side of the surface exerts a force with components 
F,(") As, q(n) As, en) As on the material on the - ve side, it being implicitly 
assumed that the area As is small enough for the 'stress' components F,("), FJ"), 
F,(") to be regarded as constant over the small surface As. A more convenient 
notation is to replace these components by the stress components an, , any, a,,, the 
first index referring to the orientation of the plane surface and the second to the 
direction of the stress. Our sign convention, which is universally accepted, except by 

I 

Bird et al. (1987(a) and (b)), is that a positive a,, (and similarly a,, and a,,) is a 
tension. Components a,,, a,, and a,, are termed 'normal stresses' and a,,, a,, etc. 
are called 'shear stresses'. It may be formally shown that a,, = a,,, a,, = a,, and 
a,,, = a,, (see, for example Schowalter 1978, p. 44). 

Figure 1.4 may be helpful to the newcomer to continuum mechanics to explain 

1 +ve side 

1 -ve side 

Fig. 1.3 The mutually perpendicular axes Ox, Oy, Oz are used to define the position and orientation of the 
small area As and the force on it. 
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Fig. 1.4 The components of stress on the plane surfaces of a volume element of a deforming medium. 

the relevance of the indicial notation. The figure contains a schematic representation 
of the stress components on the plane surfaces of a small volume which forms part 
of a general continuum. The stresses shown are those acting on the small volume 
due to the surrounding material. 

The need for an indicial notation is immediately illustrated by a more detailed 
consideration of the steady simple-shear flow associated with Newton's postulate 
(Fig. 1.1), which we can conveniently express in the mathematical form: 

where ox, u,, u, are the velocity components in the x ,  y and z directions, respec- 
tively, and is the (constant) shear rate. In the case of a Newtonian liquid, the 
stress distribution for such a flow can be written in the form 

and here there would be little purpose in considering anything other than the shear 
stress a,, which we wrote as a in eqn. (1.1). Note that it is usual to work in terms of 
normal stress differences rather than the normal stresses themselves, since the latter 
are arbitrary to the extent of an added isotropic pressure in the case of incom- 
pressible liquids, and we would need to replace (1.5) by 

oyx=vP, ax,=u,,=o, 

ax, = - P ,  'Jy, = - p ,  a,, = - p ,  

where p  is an arbitrary isotropic pressure. There is clearly merit in using (1.5) rather 
than (1.6) since the need to introduce p is avoided (see also Dealy 1982, p. 8). 

For elastic liquids, we shall see in later chapters that the stress distribution is 
more complicated, requiring us to modify (1.5) in the following manner: 
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where it is now necessary to allow the viscosity to vary with shear rate, written 
mathematically as the function ~ ( q ) ,  and to allow the normal stresses to be 
non-zero and also functions of j.. Here the so called normal stress differences N,  
and N, are of significant importance and it is difficult to see how they could be 

, conveniently introduced without an indicia1 notation *. Such a notation is therefore 
not an optional extra for mathematically-minded researchers but an absolute 
necessity. Having said that, we console non-mathematical readers with the promise 
that this represents the only major mathematical difficulty we shall meet until we 
tackle the notoriously difficult subject of constitutive equations in Chapter 8. 

1.6 Components of rheological research 

Rheology is studied by both university researchers and industrialists. The former 
may have esoteric as well as practical reasons for doing so, but the industrialist, for 
obvious reasons, is driven by a more pragmatic motivation. But, whatever the 
background or motivation, workers in rheology are forced to become conversant 
with certain well-defined sub-areas of interest which are detailed below. These are 
(i) rheometry; (ii) constitutive equations; (iii) measurement of flow behaviour in 
(non-rheometric) complex geometries; (iv) calculation of behaviour in complex 
flows. 

1.6.1 Rheometry 
In 'rheometry', materials are investigated in simple flows like the steady simple- 

shear flow already discussed. It is an important component of rheological research. 
Small-amplitude oscillatory-shear flow (s3.5) and extensional flow (Chapter 5) are 
also important. 

The motivation for any rheometrical study is often the hope that observed 
behaviour in industrial situations can be correlated with some easily measured 
rheometrical function. Rheometry is therefore of potential importance in quality 
control and process control. It is also of potential importance in assessing the 
usefulness of any proposed constitutive model for the test material, whether this is 
based on molecular or continuum ideas. Indirectly, therefore, rheometry may be 
relevant in industrial process modelling. This will be especially so in future when the 
full potential of computational fluid dynamics using large computers is realized 
within a rheological context. 

A number of detailed texts dealing specifically with rheometry are available. 
These range from the "How to" books of Walters (1975) and Whorlow (1980) to the 
"Why?" books of Walters (1980) and Dealy (1982). Also, most of the standard texts 

* By common convention N, is called the first normal stress difference and N, the second normal stress 
difference. However, the terms "primary" and "secondary" are also used. In some texts N, is defined 
as a,, - a,,, whilst N2 remains as a,,- a,,. 
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on rheology contain a significant element of rheometry, most notably Lodge (1964, 
1974), Bird et al. (1987(a) and (b)), Schowalter (1978), Tanner (1985) and 
Janeschitz-Kriegl (1983). This last text also considers 'flow birefringence', which will 
not be discussed in detail in the present book (see also Doi and Edwards 1986,§4.7). 

1.6.2 Constitutive equations 
Constitutive equations (or rheological equations of state) are equations relating 

suitably defined stress and deformation variables. Equation (1.1) is a simple 
example of the relevant constitutive law for the Newtonian viscous liquid. 

Constitutive equations may be derived from a microrheological standpoint, where 
the molecular structure is taken into account explicitly. For example, the solvent 
and polymer molecules in a polymer solution are seen as distinct entities. In recent 
years there have been many significant advances in rnicrorheological studies. 

An alternative approach is to take a continuum (macroscopic) point of view. 
Here, there is no direct appeal to the individual microscopic components, and, for 
example, a polymer solution is treated as a homogeneous continuum. 

The basic discussion in Chapter 8 will be based on the principles of continuum 
mechanics. No attempt will be made to give an all-embracing discourse on this 
difficult subject, but it is at least hoped to point the interested and suitably 
equipped reader in the right direction. Certainly, an attempt will be made to assess 
the status of the more popular constitutive models that have appeared in the 
literature, whether these arise from microscopic or macroscopic considerations. 

1.6.3 Complex flows of elastic liquids 
The flows used in rheometry, like the viscometric flow shown in Fig. 1.1, are 

generally regarded as being simple in a rheological sense. By implication, all other 
flows are considered to be complex. Paradoxically, complex flows can sometimes 
occur in what appear to be simple geometrical arrangements, e.g. flow into an 
abrupt contraction (see 55.4.6). The complexity in the flow usually arises from the 
coexistence of shear and extensional components; sometimes with the added com- 
plication of inertia. Fortunately, in many cases, complex flows can be dealt with by 
using various numerical techniques and computers. 

The experimental and theoretical study of the behaviour of elastic liquids in 
complex flows is generating a significant amount of research at the present time. In 
this book, these areas will not be discussed in detail: they are considered in depth in 
recent review articles by Boger (1987) and Walters (1985); and the important subject 
of the numerical simulation of non-Newtonian flow is covered by the text of 
Crochet, Davies and Walters (1984). 
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but a function of the shear rate f .  We define the function ~ ( f )  as the 'shear 
viscosity' or simply viscosity, although in the literature it is often referred to as the 
'apparent viscosity' or sometimes as the shear-dependent viscosity. An instrument 
designed to measure viscosity is called a ' viscometer'. A viscometer is a special type 
of 'rheometer' (defined as an instrument for measuring rheological properties) 
which is limited to the measurement of viscosity. 

The current SI unit of viscosity is the Pascal-second which is abbreviated to Pa.s. 
Formerly, the widely used unit of viscosity in the cgs system was the Poise, whlch is 
smaller than the Pa.s by a factor of 10. Thus, for example, the viscosity of water at 
20.2OC is 1 mPa.s (milli-Pascal-second) and was 1 cP (centipoise). 

In the following discussion we give a general indication of the relevance of 
viscosity to a number of practical situations; we discuss its measurement using 
various viscometers; we also study its variation with such experimental conditions as 
shear rate, time of shearing, temperature and pressure. 

2.2 Practical ranges of variables which affect viscosity 

The viscosity of real materials can be significantly affected by such variables as 
shear rate, temperature, pressure and time of shearing, and it is clearly important 
for us to highlight the way viscosity depends on such variables. To facilitate this, we 
first give a brief account of viscosity changes observed over practical ranges of 
interest of the main variables concerned, before considering in depth the shear rate, 
which from the rheological point of view, is the most important influence on 
viscosity. 

2.2.1 Variation with shear rate 
Table 2.2 shows the approximate magnitude of the shear rates encountered in a 

number of industrial and everyday situations in which viscosity is important and 
therefore needs to be measured. The approximate shear rate involved in any 
operation can be estimated by dividing the average velocity of the flowing liquid by 
a characteristic dimension of the geometry in which it is flowing (e.g. the radius of a 
tube or the thickness of a sheared layer). As we see from Table 2.2, such calculations 
for a number of important applications give an enormous range, covering 13 orders 
of magnitude from lop6  to 10' s-'. Viscometers can now be purchased to measure 
viscosity over this entire range, but at least three different instruments would be 
required for the purpose. 

In view of Table 2.2, it is clear that the shear-rate dependence of viscosity is an 
important consideration and, from a practical standpoint, it is as well to have the 
particular application firmly in mind before investing in a commercial viscometer. 

We shall return to the shear-rate dependence of viscosity in 52.3. 

2.2.2 Variation with temperature 
So far as temperature is concerned, for most industrial applications involving 

aqueous systems, interest is confined to 0 to 100 O C.  Lubricating oils and greases are 
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TABLE 2.2 
Shear rates typical of some familiar materials and processes 

Situation Typical range of Application 
shear rates (s- ') 

Sedimentation of 
fine powders in a 
suspending liquid 

Levelling due to 
surface tension 

Draining under gravity 

Extruders 
Chewing and swallowing 
Dip coating 
Mixing and stirring 
Pipe flow 
Spraying and brushing 

Rubbing 

Milling pigments 
in fluid bases 

High speed coating 
Lubrication 

Medicines, paints 

Paints, printing inks 
Painting and coating. 
Toilet bleaches 
Polymers 
Foods 
Paints, confectionary 
Manufacturing liquids 
Pumping. Blood flow 
Spray-drying, painting, 
fuel atomization 
Application of creams and lotions 

to the skin 

Paints, printing inks 
Paper 
Gasoline engines 

used from about - 50 " C to 300 O C .  Polymer melts are usually handled in the range 
150 O C to 300 O C, whilst molten glass is processed at a little above 500 C .  

Most of the available laboratory viscometers have facilities for testing in the 
range - 50 " C to 150 O C using an external temperature controller and a circulating 
fluid or an immersion bath. At higher temperatures, air baths are used. 

The viscosity of Newtonian liquids decreases with increase in temperature, 
approximately according to the Arrhenius relationship: 

where T is the absolute temperature and A and B are constants of the liquid. In 
general, for Newtonian liquids, the greater the viscosity, the stronger is the tempera- 
ture dependence. Figure 2.1 shows this trend for a number of lubricating oil 
fractions. 

The strong temperature dependence of viscosity is such that, to produce accurate 
results, great care has to be taken with temperature control in viscometry. For 
instance, the temperature sensitivity for water is 3% per " C at room temperature, so 
that +1% accuracy requires the sample temperature to be maintained to within 
k0.3" C. For liquids of higher viscosity, gven their stronger viscosity dependence 
on temperature, even greater care has to be taken. 
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Fig. 2.1. Logarithm of viscosity/temperature derivative versus logarithm of viscosity for various lubricat- 
ing oil fractions (Cameron 1966, p. 27). 

It is important to note that it is not sufficient in viscometry to simply maintain 
control of the thermostat temperature; the act of shearing itself generates heat 
within the liquid and may thus change the temperature enough to decrease the 
viscosity, unless steps are taken to remove the heat generated. The rate of energy 
dissipation per unit volume of the sheared liquid is the product of the shear stress 
and shear rate or, equivalently, the product of the viscosity and the square of the 
shear rate. 

Another important factor is clearly the rate of heat extraction, which in viscome- 
try depends on two things. First, the kind of apparatus: in one class the test liquid 
flows through and out of the apparatus whilst, in the other, test liquid is perma- 
nently contained within the apparatus. In the first case, for instance in slits and 
capillaries, the liquid flow itself convects some of the heat away. On the other hand, 
in instruments like the concentric cylinder and cone-and-plate viscometers, the 
conduction of heat to the surfaces is the only significant heat-transfer process. 

Secondly, heat extraction depends on the dimensions of the viscometers: for slits 
and capillaries the channel width is the controlling parameter, whilst for concentric 
cylinders and cone-and-plate devices, the gap width is important. It is desirable that 
these widths be made as small as possible. 

2.2.3 Variation with pressure 
The viscosity of liquids increases exponentially with isotropic pressure. Water 

below 30° C is the only exception, in which case it is found that the viscosity first 
decreases before eventually increasing exponentially. The changes are quite small 
for pressures differing from atmospheric pressureby about one bar. Therefore, for 
most practical purposes, the pressure effect is ignored by viscometer users. There 
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Fig. 2.2. Variation of viscosity with pressure: (a) Di-(2-ethylhexyl) sebacate; (b) Naphthenic mineral oil 
at 210 O F ;  (c) Naphthenic mineral oil at 100 OF. (Taken from Hutton 1980.) 

are, however, situations where this would not be justified. For example, the oil 
industry requires measurements of the viscosity of lubricants and drilling fluids at 
elevated pressures. The pressures experienced by lubricants in gears can often 
exceed 1 GPa, whilst oil-well drilling muds have to operate at depths where the 
pressure is about 20 MPa. Some examples of the effect of pressure on lubricants is 
given in Fig. 2.2 where it can be seen that a viscosity rise of four orders of 
magnitude can occur for a pressure rise from atmospheric to 0.5 GPa. 

2.3 The shear-dependent viscosity of non-Newtonian liquids 

2.3.1 Definition of Newtonian behauiour 
Since we shall concentrate on non-Newtonian viscosity behaviour in this section, 

it is important that we first emphasize what Newtonian behaviour is, in the context 
of the shear viscosity. 

Newtonian behaviour in experiments conducted at constant temperature and 
pressure has the following characteristics: 

(i) The only stress generated in simple shear flow is the shear stress a, the two 
normal stress differences being zero. 

(ii) The shear viscosity does not vary with shear rate. 

(iii) The viscosity is constant with respect to the time of shearing and the stress in 
the liquid falls to zero immediately the shearing is stopped. In any subsequent 
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shearing, however long the period of resting between measurements, the viscosity is 
as previously measured. 

(iu) The viscosities measured in different types of deformation are always in simple 
proportion to one another, so, for example, the viscosity measured in a uniaxial 
extensional flow is always three times the value measured in simple shear flow (cf. 
95.3). 

A liquid showing any deviation from the above behaviour is non-Newtonian. 

2.3.2 The shear-thinning non-Newtonian liquid 
As soon as viscometers became available to investigate the influence of shear rate 

on viscosity, workers found departure from Newtonian behaviour for many materi- 
als, such as dispersions, emulsions and polymer solutions. In the vast majority of 
cases, the viscosity was found to decrease with increase in shear rate, giving rise to 
what is now generally called 'shear-thinning' behaviour although the terms tem- 
porary viscosity loss and 'pseudoplasticity' have also been employed. * 

We shall see that there are cases (albeit few in number) where the viscosity 
increases with shear rate. Such behaviour is generally called 'shear-thickening' 
although the term 'dilatancy' has also been used. 

For shear-thinning materials, the general shape of the curve representing the 
variation of viscosity with shear stress is shown in Fig. 2.3. The corresponding 
graphs of shear stress against shear rate and viscosity against shear rate are also 
given. 

The curves indicate that in the limit of very low shear rates (or stresses) the 
viscosity is constant, whilst in the limit of hlgh shear rates (or stresses) the viscosity 
is again constant, but at a lower level. These two extremes are sometimes known as 
the lower and upper Newtonian regions, respectively, the lower and upper referring 
to the shear rate and not the viscosity. The terms "first Newtonian region" and 
"second Newtonian region" have also been used to describe the two regions where 
the viscosity reaches constant values. The higher constant value is called the 
"zero-shear viscosity". 

Note that the liquid of Fig. 2.3 does not show 'yield stress' behaviour although if 
the experimental range had been lo4 s- ' to lo- '  s- ' (which is quite a wide range) 
an interpretation of the modified Fig. 2.3(b) might draw that conclusion. In Fig. 
2.3(b) we have included so-called 'Bingham' plastic behaviour for comparison 
purposes. By definition, Bingham plastics will not flow until a critical yield stress o, 
is exceeded. Also, by implication, the viscosity is infinite at zero shear rate and there 
is no question of a first Newtonian region in this case. 

There is no doubt that the concept of yield stress can be helpful in some practical 
situations, but the question of whether or not a yield stress exists or whether all 
non-Newtonian materials will exhibit a finite zero-shear viscosity becomes of more 

* The German word is ''strukturviscositat" which is literally translated as structural viscosity, and is not 
a very good description of shear-thinning. 
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Fig. 2.3. Typical behaviour of a non-Newtonian liquid showing the interrelation between the different 
parameters. The same experimental data are used in each curve. (a) Viscosity versus shear stress. Notice 
how fast the viscosity changes with shear stress in the middle of the graph; (b) Shear stress versus shear 
rate. Notice that, in the middle of the graph, the stress changes very slowly with increasing shear rate. 
The dotted line represents ideal yield-stress (or Bingham plastic) behaviour; (c) Viscosity versus shear 
rate. Notice the wide range of shear rates needed to traverse the entire flow curve. 

than esoteric interest as the range and sophistication of modern constant-stress 
viscometers make it possible to study the very low shear-rate region of the viscosity 
curve with some degree of precision (cf. Barnes and Walters 1985). We simply 
remark here that for dilute solutions and suspensions, there is no doubt that flow 
occurs at the smallest stresses: the liquid surface levels out under gravity and there 
is no yield stress. For more concentrated systems, particularly for such materials as 
gels, lubricating greases, ice cream, margarine and stiff pastes, there is understanda- 
ble doubt as to whether or not a yield stress exists. It is easy to accept that a lump of 
one of these materials will never level out under its own weight. Nevertheless there 
is a growing body of experimental evidence to suggest that even concentrated 
systems flow in the limit of very low stresses. These materials appear not to flow 
merely because the zero shear viscosity is so high. If the viscosity is 10'O~a.s it 
would take years for even the slightest flow to be detected visually! 

The main factor which now enables us to explore with confidence the very low 
shear-rate part of the viscosity curve is the availability, on a commercia] basis, of 
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constant stress viscometers of the Deer type (Davis et al. 1968). Before this 
development, emphasis was laid on the production of constant shear-rate viscome- 
ters such as the Ferranti-Shirley cone-and-plate viscometer. This latter machine has 
a range of about 20 to 20,000 s-', whilst the Haake version has a range of about 1 
to 1000 s-', in both cases a lo3-fold range. The Umstatter capillary viscometer, an 
earlier development, with a choice of capillaries, provides a lo6-fold range. Such 
instruments are suitable for the middle and upper regions of the general flow curve 
but they are not suitable for the resolution of the low shear-rate region. To do this, 
researchers used creep tests ($3.7.1) and devices like the plastometer (see, for 
example, Sherman, 1970, p 59), but there was no overlap between results from these 
instruments and those from the constant shear-rate devices. Hence the low shear-rate 
region could never be unequivocally linked with the high shear-rate region. This 
situation has now changed and the overlap has already been achieved for a number 
of materials. 

Equations that predict the shape of the general flow curve need at least four 
parameters. One such is the Cross (1965) equation given by 

or, what is equivalent, 

where q0 and q,  refer to the asymptotic values of viscosity at very low and very 
high shear rates respectively, K is a constant parameter with the dimension of time 
and m is a dimensionless constant. 

A popular alternative to the Cross model is the model due to Carreau (1972) 

where K, and m, have a similar significance to the K and m of the Cross model. 
By way of illustration, we give examples in Fig. 2.4 of the applicability of the 

Cross model to a number of selected materials. 
It is informative to make certain approximations to the Cross model, because, in 

so doing, we can introduce a number of other popular and widely used viscosity 
models. * For example, for q<< q0 and q >> q,, the Cross model reduces to 

* We have used shear rate as the independent variable. However, we could equally well have employed 
the shear stress in this connection, with, for instance, the so-called Ellis model as the equivalent of the 
Cross model. 
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Fig. 2.4. Examples of the applicability of the Cross equation (eqn. (2.2a)): (a) 0.4% aqueous solution of 
polyacrylamide. Data from Boger (1977(b)). The solid line represents the Cross equation with qo = 1.82 
Pas,  q ,  = 2.6 mPa.s, K = 1.5 s, and rn = 0.60; (b) Blood (normal human, Hb = 37%). Data from Mills et 
al. (1980). The solid line represents the Cross equation with qo = 125 mPa.s, 11, = 5 mPa.s, K = 52.5 s 
and m = 0.715; (c) Aqueous dispersion of polymer latex spheres. Data from Quemada (1978). The solid 
line represents the Cross equation with qo = 24 mPa.s, q ,  = 11 mPa.s, K = 0.018 s and rn = 1.0; (d) 
0.35% aqueous solution of Xanthan gum. Data from Whitcomb and Macosko (1978). The solid line 
represents the Cross equation with qo = 15 Pas, q ,  = 5 mPa.s, K = 10 s, rn = 0.80. 

which, with a simple redefinition of parameters can be written 

This is the well known 'power-law' model and n is called the power-law index. K ,  is 
called the 'consistency' (with the strange units of Pa.sn). 

Further, if 7, -=K qO, we have 

which can be rewritten as 

This is called the Sisko (1958) model. If n is set equal to zero in the Sisko model, we 
obtain 



20 Viscosity [Chap. 2 

0 - 5  1 0 -  1 0  10' l o 3  
Shear r o t e .  7 / s - '  

Fig. 2.5 Typical viscosity/shear rate graphs obtained using the Cross, power-law and Sisko models. Data 
for the Cross equation curve are the same as used in Fig. 2.3. The other curves represent the same data 
but have been shifted for clarity. 

which, with a simple redefinition of parameters can be written 

where a, is the yield stress and q, the plastic visccsity (both constant). This is the 
Bingham model equation. 

The derived equations apply over limited parts of the 'flow curve'. Figure 2.5 
illustrates how the power-law fits only near the central region whilst the Sisko model 
fits in the mid-to-high shear-rate range. 

The Bingham equation describes the shear stress/shear rate behaviour of many 
shear-thinning materials at low shear rates, but only over a one-decade range 
(approximately) of shear rate. Figures 2.6(a) and (b) show the Bingham plot for a 
synthetic latex, over two different shear-rate ranges. Although the curves fit the 
equation, the derived parameters depend on the shear-rate range. Hence, the use of 
the Bingham equation to characterize viscosity behaviour is unreliable in this case. 
However, the concept of yield stress is sometimes a very good approximation for 
practical purposes, such as in characterizing the ability of a grease to resist slumping 
in a roller bearing. Conditions under which this approximation is valid are that the 
local value of n is small (say < 0.2) and the ratio qO/q, is very large (say > lo9). 

The Bingham-type extrapolation of results obtained with a laboratory viscometer 
to give a yield stress has been used to predict the size of solid particles that could be 
permanently suspended in a gelled liquid. This procedure rarely works in practice 
for thickened aqueous systems because the liquid flows, albeit slowly, at stresses 
below this stress. The use of qo and Stokes' drag law gives a better prediction of the 
settling rate. Obviously, if this rate can be made sufficiently small the suspension 
becomes "non-settling" for practical purposes. 
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Fig. 2.6. Flow curves for a synthetic latex (taken from Barnes and Walters 1985): (a and b) Bingham 
plots over two different ranges of shear rate, showing two different intercepts; (c) Semi-logarithmic plot 
of data obtained at much lower shear rates, showing yet another intercept; (d) Logarithmic plot of data 
at the lowest obtainable shear rates, showing no yield-stress behaviour; (e) The whole of the experimental 
data plotted as viscosity versus shear rate on logarithmic scales. 

The power-law model of eqn. (2.5) fits the experimental results for many 
materials over two or three decades of shear rate, making it more versatile than the 
Bingham model. It is used extensively to describe the non-Newtonian flow proper- 
ties of liquids in theoretical analyses as well as in practical engineering applications. 
However, care should be taken in the use of the model when employed outside the 
range of the data used to define it. Table 2.3 contains typical values for the 
power-law parameters for a selection of well-known non-Newtonian materials. 

The power-law model fails at high shear rates, where the viscosity must ulti- 
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TABLE 2.3 
Typical power-law parameters of a selection of well-known materials for a particular range of shear rates. 

Material K2(Pa.sn) n Shear rate range (s-') 

Ball-point pen ink 10 0.85 1 0 ~ - 1 0 ~  
Fabric conditioner 10 0.6 lo0- lo2 

Polymer melt lo000 0.6 l 0 ~ - 1 0 ~  
Molten chocolate 50 0.5 10-'-10 
Synovial fluid 0.5 0.4 10-'-lo2 

Toothpaste 300 0.3 10~-10~ 
Skin cream 250 0.1 lo0 -lo2 
Lubricating grease lo00 0.1 10-'-lo2 

mately approach a constant value; in other words, the local value of n must 
ultimately approach unity. This failure of the power-law model can be rectified by 
the use of the Sisko model, which was originally proposed for high shear-rate 
measurements on lubricating greases. Examples of the usefulness of the Sisko model 
in describing the flow properties of shear-thinning materials over four or five 
decades of shear rate are given in Fig. 2.7. 

Attempts have been made to derive the various viscosity laws discussed in this 
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Fig. 2.7. Examples of the applicability of the Sisko model (eqn. (2.7)): (a) Commercial fabric softener. 
Data obtained by Barnes (unpublished). The solid line represents the Sisko model with q, = 24 mPa.s, 
K2 = 0.11 Pa.s " and n = 0.4; (b) 1% aqueous solution of Carbopol. Data obtained by Barnes (unpub- 
lished). The solid line represents the Sisko model with q, = 0.08 Pas, K2 = 8.2 Pa.sn and n = 0.066; (c) 
40% Racemic poly- y -benzyl glutamate polymer liquid crystal. Data points obtained from Onogi and 
Asada (1980). The solid line represents the Sisko model with q ,  = 1.25 Pa.s, K2 = 15.5 Pa.sn, n = 0.5; (d) 
Commercial yogurt. Data points obtained from deKee et al. (1980). The solid line represents the Sisko 
model with q, = 4 mPa.s, K2 = 34 Pa.sn and n = 0.1. 
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section from microstructural considerations. However, these laws must be seen as 
being basically empirical in nature and arising from curve-fitting exercises. 

2.3.3 The shear-thickening non-Newtonian liquid 
It is possible that the very act of deforming a material can cause rearrangement 

of its microstructure such that the resistance to flow increases with shear rate. 
Typical examples of the shear-thickening phenomenon are given in Fig. 2.8. It will 
be observed that the shear-thickening region extends over only about a decade of 
shear rate. In this region, the power-law model can usually be fitted to the data with 
a value of n greater than unity. 

In almost all known cases of shear-thickening, there is a region of shear-thinning 
at lower shear rates. 

I I 
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Fig. 2.8. Examples of shear-thickening behaviour: (a) Surfactant solution. CTA-sal. solution at 25O C, 
showing a time-effect (taken from Gravsholt 1979); (b) Polymer solution. Solution of anti-misting 
polymer in aircraft jet fuel, showing the effect of photodegradation during ( I )  1 day, (2 )  15 days, (3) 50 
days exposure to daylight at room temperature (taken from Matthys and Sabersky 1987); (c) Aqueous 
suspensions of solid particles. Deflocculated clay slurries showing the effect of concentration of solids. 
The parameter is the %w/w concentration (taken from Beazley 1980). 
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2.3.4 Time effects in non-Newtonian liquids 
We have so far assumed by implication that a given shear rate results in a 

corresponding shear stress, whose value does not change so long as the value of the 
shear rate is maintained. This is often not the case. The measured shear stress, and 
hence the viscosity, can either increase or decrease with time of shearing. Such 
changes can be reversible or irreversible. 

According to the accepted definition, a gradual decrease of the viscosity under 
shear stress followed by a gradual recovery of structure when the stress is removed is 
called ' thixotropy'. The opposite type of behaviour, involving a gradual increase in 
viscosity, under stress, followed by recovery, is called 'negative thixotropy' or 
'anti-thixotropy'. A useful review of the subject of time effects is provided by Mewis 
(1 979). 

Thlxotropy invariably occurs in circumstances where the liquid is shear-thinning 
(in the sense that viscosity levels decrease with increasing shear rate, other things 
being equal). In the same way, anti-thixotropy is usually associated with shear-thick- 
ening behaviour. The way that either phenomenon manifests itself depends on the 
type of test being undertaken. Figure 2.9 shows the behaviour to be expected from 
relatively inelastic colloidal materials in two kinds of test: the first involving step 
changes in applied shear rate or shear stress and the second being a loop test with 

STEP CHANGE LOOP TEST 

Time Time 

Fig. 2.9. Schematic representation of the response of an inelastic thixotropic material to two shear-rate 
histories. 
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the shear rate increased continuously and linearly in time from zero to some 
maximum value and then decreased to zero in the same way. 

If highly elastic colloidal liquids are subjected to such tests, the picture is more 
complicated, since there are contributions to the stress growth and decay from 
viscoelasticity. 

The occurrence of thixotropy implies that the flow history must be taken into 
account when making predictions of flow behaviour. For instance, flow of a 
thixotropic material down a long pipe is complicated by the fact that the viscosity 
may change with distance down the pipe. 

2.3.5 Temperature effects in two-phase non-Newtonian liquids 
In the simplest case, the change of viscosity with temperature in two-phase 

liquids is merely a reflection of the change in viscosity of the continuous phase. 
Thus some aqueous systems at room temperature have the temperature sensitivity of 
water, i.e. 3% per " C. In other cases, however, the behaviour is more complicated. 
In dispersions, the suspended phase may go through a melting point. This will result 
in a sudden and larger-than-expected decrease of viscosity. In those dispersions, for 
which the viscosity levels arise largely from the temperature-sensitive colloidal 
interactions between the particles, the temperature coefficient will be different from 
that of the continuous phase. For detergent-based liquids, small changes in tempera- 
ture can result in phase changes which may increase or decrease the viscosity 
dramatically. 

In polymeric systems, the solubility of the polymer can increase or decrease with 
temperature, depending on the system. The coiled chain structure may become more 
open, resulting in an increase in resistance to flow. This is the basis of certain 
polymer-thickened multigrade oils designed to maintain good lubrication at high 
temperatures by partially offsetting the decrease in viscosity with temperature of the 
base oil (see also 96.11.2). 

2.4 Viscometers for measuring shear viscosity 

2.4.1 General considerations 
Accuracy of measurement is an important issue in viscometry. In this connection, 

we note that it is possible in principle to calibrate an instrument in terms of speed, 
geometry and sensitivity. However, it is more usual to rely on the use of standar- 
dized Newtonian liquids (usually oils) of known viscosity. Variation of the molecu- 
lar weight of the oils allows a wide range of viscosities to be covered. These oils are 
chemically stable and are not very volatile. They themselves are calibrated using 
glass capillary viscometers and these viscometers are, in turn, calibrated using the 
internationally accepted standard figure for the viscosity of water (1.002 mPa.s at 
20.00 O C, this value being uncertain to _+ 0.25%). Bearing in mind the accumulated 
errors in either the direct or comparative measurements, the everyday measurement 
of viscosity must obviously be worse than the 0.25% mentioned above. In fact for 
mechanical instruments, accuracies of ten times this figure are more realistic. 
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Fig. 2.10. Examples of industrial viscometers with complicated flow fields, including star-ratings for 
convenience and robustness. 

2.4.2 Industrial shop-floor instruments 
Some viscometers used in industry have complicated flow and stress fields, 

although their operation is simple. In the case of Newtonian liquids, the use of such 
instruments does not present significant problems, since the instruments can be 
calibrated with a standard liquid. However, for non-Newtonian liquids, complicated 
theoretical derivations are required to produce viscosity information, and in some 
cases no amount of mathematical complication can generate consistent viscosity 
data (see, for example, Walters and Barnes 1980). 

Three broad types of industrial viscometer can be identified (Fig. 2.10). The first 
type comprises rotational devices, such as the Brookfield viscometer. There is some 
hope of consistent interpretation of data from such instruments (cf. Williams 1979). 
The second type of instrument involves what we might loosely call "flow through 
constrictions" and is typified by the Ford-cup arrangement. Lastly, we have those 
that involve, in some sense, flow around obstructions such as in the Glen Creston 
falling-ball instrument (see, for example, van Wazer et al. 1963). Rising-bubble 
techniques can also be included in this third category. 

For all the shop-floor viscometers, great care must be exercised in applying 
formulae designed for Newtonian liquids to the non-Newtonian case. 

2.4.3 Rotational instruments; general comments 
Many types of viscometer rely on rotational motion to achieve a simple shearing 

flow. For such instruments, the means of inducing the flow are two-fold: one can 
either drive one member and measure the resulting couple or else apply a couple 
and measure the subsequent rotation rate. Both methods were well established 
before the first World War, the former being introduced by Couette in 1888 and the 
latter by Searle in 1912. 

There are two ways that the rotation can be applied and the couple measured: 
the first is to drive one member and measure the couple on the same member, whilst 
the other method is to drive one member and measure the couple on the other. In 
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modern viscometers, the first method is employed in the Haake, Contraves, Fer- 
ranti-Shirley and Brookfield instruments; the second method is used in the Weissen- 
berg and Rheometrics rheogoniometers. 

For couple-driven instruments, the couple is applied to one member and its rate 
of rotation is measured. In Searle's original design, the couple was applied with 
weights and pulleys. In modem developments, such as in the Deer constant-stress 
instrument, an electrical drag-cup motor is used to produce the couple. The couples 
that can be applied by the commercial constant stress instruments are in the range 
l o f 6  to l o f 2  Nm; the shear rates that can be measured are in the range to lo3 
s

f
' ,  depending of course on the physical dimensions of the instruments and the 

viscosity of the material. The lowest shear rates in this range are equivalent to one 
complete revolution every two years; nevertheless it is often possible to take 
steady-state measurements in less than an hour. 

As with all viscometers, it is important to check the calibration and zeroing from 
time to time using calibrated Newtonian oils, with viscosities within the range of 
those being measured. 

2.4.4 The narrow-gap concentric-cylinder viscometer 
If the gap between two concentric cylinders is small enough and the cylinders are 

in relative rotation, the test liquid enclosed in the gap experiences an almost 
constant shear rate. Specifically, if the radii of the outer and inner cylinders are ro 
and r , ,  respectively, and the angular velocity of the inner is Q,, (the other being 
stationary) the shear rate i. is given by 

For the gap to be classed as "narrow" and the above approximation to be valid to 
within a few percent, the ratio of r,  to ro must be greater than 0.97. 

If the couple on the cylinders is C,  the shear stress in the liquid is given by 

and from (2.9) and (2.10), we see that the viscosity is given by 

where L is the effective immersed length of the liquid being sheared. This would be 
the real immersed length, 1, if there were no end effects. However, end effects are 
likely to occur if due consideration is not given to the different shearing conditions 
which may exist in any liquid covering the ends of the cylinders. 
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One way to proceed is to carry out experiments at various immersed lengths, I, 
keeping the rotational rate constant. The extrapolation of a plot of C against I then 
gives the correction which must be added to the real immersed length to provide the 
value of the effective immersed length L. In practice, most commercial viscometer 
manufacturers arrange the dimensions of the cylinders such that the ratio of the 
depth of liquid to the gap between the cylinders is in excess of 100. Under these 
circumstances the end correction is negligible. 

The interaction of one end of the cylinder with the bottom of the containing 
outer cylinder is often minimized by having a recess in the bottom of the inner 
cylinder so that air is entrapped when the viscometer is filled, prior to making 
measurements. Alternatively, the shape of the end of the cylinder can be chosen as a 
cone. In operation, the tip of the cone just touches the bottom of the outer cylinder 
container. The cone angle (equal to tan-' [(r, - r,)/ro]) is such that the shear rate 
in the liquid trapped between the cone and the bottom is the same as that in the 
liquid between the cylinders. This arrangement is called the Mooney system, after 
its inventor. 

2.4.5 The wide-gap concentric-cylinder viscometer 
The limitations of very narrow gaps in the concentric-cylinder viscometer are 

associated with the problems of achieving parallel alignment and the difficulty of 
coping with suspensions containing large particles. For these reasons, in many 
commercial viscometers the ratio of the cylinder radii is less than that stated in 
g2.4.4; thus some manipulation of the data is necessary to produce the correct 
viscosity. This is a nontrivial operation and has been studied in detail by Krieger 
and Maron (1954). Progress can be readily made if it is assumed that the shear 
stress/shear rate relationship over the interval of shear rate in the gap can be 
described by the power-law model of eqn. (2.5). The shear rate in the liquid at the 
inner cylinder is then given by 

where b is the ratio of the inner to outer radius (i.e. b = r,/r,). Note that the shear 
rate is now dependent on the properties of the test liquid, unlike the narrow-gap 
instrument. 

The shear stress in the liquid at the inner cylinder is given by 

The value of n can be determined by plotting C versus 0, on a double-logarithmic 
basis and taking the slope at the value of Ol under consideration. 
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Fig. 2.11. Ratio of actual (eqn. 2.12) to approximate (eqn. 2.9) shear rates at the rotating cylinder as a 
function of the ratio of the inner to the outer cylinder radii, with n, the power law index, as parameter. 

The viscosity (measured at the inner-cylinder shear rate) is given by 

The error involved in employing the narrow-gap approximation instead of the 
wide-gap expression, eqn. (2.14), is shown in Fig. 2.11. Clearly, using values of 
b < 0.97 gives unacceptable error when the liquid is shear-thinning (n < 1). 

The lower limit of shear rate achievable in a rotational viscometer is obviously 
governed by the drive system. The upper limit, however, is usually controlled by the 
test liquid. One limit is the occurrence of viscous heating of such a degree that 
reliable correction cannot be made. However, there are other possible limitations. 
Depending on which of the cylinders is rotating, at a critical speed the simple 
circumferential streamline flow breaks down, either with the appearance of steady 
(Taylor) vortices or turbulence. Since both of these flows require more energy than 
streamline flow, the viscosity of the liquid apparently increases. In practical terms, 
for most commercial viscometers, it is advisable to consider the possibility of such 
disturbances occurring if the viscosity to be measured is less than about 10 mPa.s. 

2.4.6 Cylinder rotating in a large volume of liquid 
If we take the wide-gap Couette geometry to the extreme with the radius of the 

outer cylinder approaching infinity, the factor (1 - b2/") in (2.12) and (2.14) 
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Fig. 2.12. The cone-and-plate viscometer. Cross-sectional diagram of one possible configuration, viz. cone 
on top, rotating plate and couple measured on the cone. The inset shows the form of truncation used in 
many instruments. 

approaches unity. For a power-law liquid, the values of the shear rate and shear 
stress in the liquid at the rotating cylinder of radius r, are then given by 

and 

Again, at any particular value of 52,, n can be calculated as the local value of 
d(ln C)/d(ln 9,). These equations are applicable to viscometers of the Brookfield 
type in which a rotating bob is immersed in a beaker of liquid. The technique is 
restricted to moderately low shear rates: 0.1 s-' to 10 s-' is a typical range. 

2.4.7 The cone-and-plate viscometer 
In the cone-and-plate geometry shown in Fig. 2.12, the shear rate is very nearly 

the same everywhere in the liquid provided the gap angle 8, is small (see Chapter 4 
for the details). The shear rate in the liquid is given by 

where 52, is the angular velocity of the rotating platten. Note that the shear rate 
does not depend on the properties of the liquid. 

The shear stress (measured via the couple C on the cone) is given by 

where a is the radius of the cone. Thus the viscosity is given by 

If the liquid under investigation has a low viscosity, high rotational speeds are 
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often necessary to produce torques large enough to be measured accurately. How- 
ever, under these circumstances, 'secondary flows' may arise (see, for example, 
Walters 1975). The secondary flow absorbs extra energy, thus increasing the couple, 
which the unwary may mistakenly associate with shear-thickening. Cheng (1968) has 
provided an empirical formula which goes some way towards dealing with the 
problem. 

All cone-and-plate instruments allow the cone to be moved away from the plate 
to facilitate sample changing. It is very important that the cone and plate be reset so 
that the tip of the cone lies in the surface of the plate. For a lo gap angle and a cone 
radius of 50 mm, every 10 pm of error in the axial separation produces an 
additional 1% error in the shear rate. 

To avoid error in contacting the cone tip (which might become worn) and the 
plate (which might become indented), the cone is often truncated by a small 
amount. In this case, it is necessary to set the virtual tip in the surface of the plate as 
shown in Fig. 2.12 (b). A truncated cone also facilitates tests on suspensions. 

2.4.8 The parallel-plate uiscometer 
For torsional flow between parallel plates (see Fig. 2.13) the shear rate at the rim 

( r  = a )  is given by 

It is this shear rate that finds its way into the interpretation of experimental data for 
torsional flow. It can be shown (Walters 1975, p. 52) that the viscosity is given by 

where C is the couple on one of the plates. For power-law models, eqn. (2.21) 
becomes 

Couple 
measuring 
device 

Fig. 2.13. Cross-sectional diagram of the torsional parallel-plate viscometer. 
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It will be noticed from eqn. (2.20) that the rim shear rate may be changed by 
adjusting either the speed 9, or the gap h.  

In the torsional-balance rheometer, an adaptation of the parallel-plate viscometer 
(see Chapter 4 for the details), shear rates in the lo4  to lo5  s-' range have been 
attained. 

2.4.9 Capillary viscometer 
If a Newtonian liquid flows down a straight circular tube of radius a at a volume 

flowrate Q (see Fig. 2.14), the pressure gradient generated along it (d P/dl)  is given 
by the Poiseuille equation: 

In this situation, the shear stress in the liquid varies linearly from (a/2)(dP/dl) at 
the capillary wall to zero at the centre line. For Newtonian liquids, the shear rate 
varies similarly from 4Q/(7ra3) in the immediate vicinity of the wall to zero at the 
centreline. If, however, the viscosity varies with shear rate the situation is more 
complex. Progress can be made by concentrating on flow near the wall. Analysis 
shows (cf. Walters 1975, Chapter 5) that for a non-Newtonian liquid, the shear rate 
at the wall is modified to 

whilst the shear stress at the wall ow, is unchanged at (a/2) (dP/dl). The bracketed 
term in (2.24) is called the Rabinowitsch correction. Then finally 

When shear-thinning liquids are being tested, d(ln Q)/d(ln ow) is greater than 1 and 
for power-law liquids is equal to l /n.  Since n can be as low as 0.2, the contribution 

Velocity 
profile 

,- 8 

Volumetric r // 

CDifferentiol pressure dP over length d l 4  

Fig. 2.14. Cutaway diagram of laminar Newtonian flow in a straight circular capillary tube. 
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of the d(ln Q)/d(ln a,) factor to the bracketed term can be highly significant in 
determining the true wall shear rate. 

Care has to be taken in defining and measuring the pressure gradient dP/d/. If 
the pressure in the external reservoir supplying the capillary and the receiving vessel 
are measured, then, unless the ratio of tube length to radius is very large (> loo), 
allowance must be made for entrance and exit effects. These arise from the 
following sources for all types of liquid: 

(i) Viscous and inertial losses in the converging stream up to the entrance. 

(ii) Redistribution of the entrance velocities to achieve the steady state velocity 
profile within the tube. 

(iii) Similar effects to the above at the exit. 

Formulae exist which account for these effects for Newtonian liquids, ( i )  and 
(iii) being associated with the names of Hagenbach and Couette (see, for example 
Kestin et al. 1973). However, these effects are small if the ratio of tube length to 
radius is 100 or more. 

The main end effects can be avoided if at various points on the tube wall, well 
away from the ends, the pressures are measured by holes connected to absolute or 
differential pressure transducers. Any error arising from the flow of the liquid past 
the holes in the tube wall (see 84.4.1.11) is cancelled out when identical holes are 
used and the pressure gradient alone is required. 

It is not often convenient to drill pressure-tappings, and a lengthy experimental 
programme may then be necessary to determine the type-(i) errors in terms of an 
equivalent pressure-drop and type-(ii) errors in terms of an extra length of tube. 
The experiments required can be deduced from the theoretical treatment of Kestin 
et al. (1973) and a recent application of them has been published by Galvin et al. 
(1981). If the liquid is highly elastic, an additional entrance and exit pressure drop 
arises from the elasticity. The so-called Bagley correction then allows an estimate of 
the elastic properties to be calculated. It is also used to provide an estimate of the 
extensional viscosity of the liquid (see 55.4.6). 

Before leaving the discussion of the capillary viscometer, it is of interest to study 
the pressure-gradient/flow-rate relationship for the power-law model (2.5): 

From this equation we see the effect of changes in such variables as pipe radius. For 
Newtonian liquids, the pressure drop for a given flow rate is proportional to the 
fourth power of the radius, but thls is changed if the liquid is shear-thinning. For 
instance, if n = f, the pressure drop is proportional to the square of the radius. This 
is clearly important in any scale-up of pipe flow from pilot plant to factory 
operation. 
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Fig. 2.15. The velocity profiles for the laminar flow of power-law liquids in a straight circular pipe, 
calculated for the same volumetric throughput. Note the increase in the wall shear rate and the 
increasingly plug-like nature of the flow as n decreases. 

The velocity profile in pipe flow is parabolic for Newtonian liquids. For power-law 
liquids this is modified to 

Figure 2.15 shows the effect of progressively decreasing the power-law index, i.e. 
increasing the degree of shear thinning. We see the increasing plug-like nature of the 
flow with, effectively, only a thin layer near the wall being sheared. This has 
important consequences in heat-transfer applications, where heating or cooling is 
applied to the liquid from the outside of the pipe. The overall heat transfer is partly 
controlled by the shear rate in the liquid near the pipe wall. For a power-law liquid, 
this shear rate is changed from the Newtonian value by a factor [3 + (l/n)]/4. This 
means that heat transfer is increased for shear-thinning liquids (n < 1) and de- 
creased for shear-thickening liquids (n > I), but the former is the larger effect. 

2.4.10 Slit viscometer 
Flow under an applied pressure gradient between two parallel stationary walls is 

known as slit flow. It is a two-dimensional analogue of capillary flow. The 
governing equations for slit flow are (cf. Walters 1975, Chapter 5) 

and 
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where h is the slit height and b is the slit width, Q is the flow rate and dP/dl  is the 
pressure gradient. 

Slit flow forms the basis of the viscometer version of the Lodge stressmeter. The 
stressmeter is described more fully in Chapter 4. The viscometer version differs from 
that discussed in $4.4.3 in that the transducer TI in Fig. 4.13 is unnecessary and is 
replaced by a solid wall. The instrument has the advantage that shear rates in excess 
of lo6 s-' can be achieved with little interference from viscous heating. 

2.4.11 On-line measurements 
It is frequently necessary to monitor the viscosity of a liquid "on line" in a 

number of applications, particularly when the constitution or temperature of the 
liquid is likely to change. Of the viscometers described in this chapter, the capillary 
viscometer and the concentric-cylinder viscometer are those most conveniently 
adapted for such a purpose. For the former, for example, the capillary can be 
installed directly in series with the flow: the method has attractive features, but its 
successful application to non-Newtonian liquids is non-trivial. 

Care must be taken with the on-line concentric-cylinder apparatus, since the 
interpretation of data from the resulting helical flow is not easy. 

Other on-line methods involve obstacles in the flow channel: for example, a float 
in a vertical tapered tube, as in the Rotameter, will arrive at an equilibrium position 
in the tube depending on the precise geometry, the rate of flow, the viscosity and the 
weight of the obstacle. The parallel-plate viscometer has also been adapted for 
on-line measurement (see, for example, Noltingk 1975). 



CHAPTER 3 

LINEAR VISCOELASTICITY 

3.1 Introduction 

The word 'viscoelastic' means the simultaneous existence of viscous and elastic 
properties in a material (cf. 51.2). It is not unreasonable to assume that all real 
materials are viscoelastic, i.e. in all materials, both viscous and elastic properties 
coexist. As was pointed out in the Introduction, the particular response of a sample 
in a given experiment depends on the time-scale of the experiment in relation to a 
natural time of the material. Thus, if the experiment is relatively slow, the sample 
will appear to be viscous rather than elastic, whereas, if the experiment is relatively 
fast, it will appear to be elastic rather than viscous. At intermediate time-scales 
mixed, i.e. viscoelastic, response is observed. The concept of a natural time of a 
material will be referred to again later in this chapter. However, a little more needs 
to be said about the assumption of viscoelasticity as a universal phenomenon. It is 
not a generally-held assumption and would be difficult to prove unequivocally. 
Nevertheless, experience has shown that it is preferable to assume that all real 
materials are viscoelastic rather than that some are not. Given this assumption, it is 
then incorrect to say that a liquid is Newtonian or that a solid is Hookean. On the 
other hand, it would be quite correct to say that such-and-such a material shows 
Newtonian, or Hookean, behaviour in a given situation. This leaves room for 
ascribing other types of behaviour to the material in other circumstances. However, 
most rheologists still refer to certain classes of liquid (rather than their behaviour) as 
being Newtonian and to certain classes of solid as being Hookean, even when they 
know that these materials can be made to deviate from the model behaviours. 
Indeed, it is done in this book! Old habits die hard. However, it is considered more 
important that an introductory text should point out that such inconsistencies exist 
in the literature rather than try to maintain a purist approach. 

For many years, much labour has been expended in the determination of the 
linear viscoelastic response of materials. There are many reasons for this (see, for 
example, Walters 1975, p. 121, Bird et al. 1987(a), p. 225). First there is the 
possibility of elucidating the molecular structure of materials from their linear- 
viscoelastic response. Secondly, the material parameters and functions measured in 
the relevant experiments sometimes prove to be useful in the quality-control of 
industrial products. Thirdly, a background in linear viscoelasticity is helpful before 
proceeding to the much more difficult subject of nun-linear viscoelasticity (cf. the 
relative simplicity of the mathematics in the present chapter with that in Chapter 8 
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which essentially deals with non-linear viscoelasticity). Finally, a further motivation 
for some past studies of viscoelasticity came from tribology, where knowledge of the 
steady shear viscosity function q ( y )  discussed in $2.3 was needed at high shear rates 
(lo6 s-' or higher). Measurements of this function on low-viscosity "Newtonian" 
lubricants at high shear rates were made difficult by such factors as viscous heating, 
and this led to a search for an analogy between shear viscosity and the correspond- 
ing dynamic viscosity determined under linear viscoelastic conditions, the argument 
being that the latter viscosity was easier to measure (see, for example, Dyson 1970). 

Many books on rheology and rheometry have sections on linear viscoelasticity. 
We recommend the text by Ferry (1980) which contains a wealth of information and 
an extensive list of references. Mathematical aspects of the subject are also well 
covered by Gross (1953) and Staverman and Schwarzl (1956). 

3.2 The meaning and consequences of linearity 

The development of the mathematical theory of linear viscoelasticity is based on 
a "superposition principle". This implies that the response (e.g. strain) at any time is 
directly proportional to the value of the initiating signal (e.g. stress). So, for 
example, doubling the stress will double the strain. In the linear theory of viscoelas- 
ticity, the differential equations are linear. Also, the coefficients of the time 
differentials are constant. These constants are material parameters, such as viscosity 
coefficient and rigidity modulus, and they are not allowed to change with changes in 
variables such as strain or strain rate. Further, the time derivatives are ordinary 
partial derivatives. This restriction has the consequence that the linear theory is 
applicable only to small changes in the variables. 

We can now write down a general differential equation for linear viscoelasticity 
as follows: 

where n = m or n = m - 1 (see for example, Oldroyd 1964). Note that for simplicity 
we have written (3.1) in terms of the shear stress a and the strain y ,  relevant to a 
simple shear of the sort discussed in Chapter 1, except that we now allow a and y to 
be functions of the time t. However, we emphasise that other types of deformation 
could be included without difficulty, with the stress and strain referring to that 
particular deformation process. Mathematically, this means that we could replace 
the scalar variables a and y by their tensor generalizations. For example, a could be 
replaced by the stress tensor aij .  
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3.3 The Kelvin and Maxwell models 

We now consider some important special cases of eqn. (3.1). If Po is the only 
non-zero parameter, we have 

which is the equation of Hookean elasticity (i.e. linear solid behaviour) with Po as 
the rigidity modulus. If Pl is the only non-zero parameter, we have 

in our notation. This represents Newtonian viscous flow, the constant P, being the 
coefficient of viscosity. 

If Po (= G) and p, (= q) are both non-zero, whilst the other constants are zero, 
we have 

which is one of the simplest models of viscoelasticity. It is called the 'Kelvin model', 
although the name 'Voigt' is also used. If a stress a is suddenly applied at t = 0 and 
held constant thereafter, it is easy to show that, for the Kelvin model, 

where TK has been written for the ratio q/G. It has the dimension of time and 
controls the rate of growth of strain y following the imposition of the stress a. 
Figure 3.1 shows the development of the dimensionless group yG/Z diagrammati- 
cally. The equilibrium value of y is E/G; hence yG/a = 1, which is also the value 
for the Hooke model. The difference between the two models is that, whereas the 

1.0 HOOKE MODEL 

KELVIN MODEL 

7 G / b  

0 
Time 

Fig. 3.1 Growth of strain y following the application of stress 5 at time t = 0 for a Kelvin model and 
Hooke model. 
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Hooke model reaches its final value of strain "instantaneously", in the Kelvin 
model the strain is retarded. The time constant 7, is accordingly called the 
'retardation time'. The word instantaneously is put in quotation marks because in 
practice the strain could not possibly grow in zero time even in a perfectly elastic 
solid, because the stress wave travels at the speed of sound, thus giving rise to a 
delay. 

It is useful at this stage to introduce "mechanical models", which provide a 
popular method of describing linear viscoelastic behaviour. These one-dimensional 
mechanical models consist of springs and dashpots so arranged, in parallel or in 
series, that the overall system behaves analogously to a real material, although the 
elements themselves may have no direct analogues in the actual material. The 
correspondence between the behaviour of a model and a real material can be 
achieved if the differential equation relating force, extension and time for the model 
is the same as that relating stress, strain and time for the material, i.e. this method is 
equivalent to writing down a differential equation relating stress and strain, but it 
has a practical advantage in that the main features of the behaviour of a material 
can often be inferred by inspection of the appropriate model, without going into the 
mathematics in detail. 

In mechanical models, Hookean deformation is represented by a spring (i.e. an 
element in which the force is proportional to the extension) and Newtonian flow by 
a dashpot (i.e. an element in which the force is porportional to the rate of extension) 
as shown in Fig. 3.2. The analogous rheological equations for the spring and the 
dashpot are (3.2) (with Po = G) and (3.4) (with P, = q ) ,  respectively. The behaviour 
of more complicated materials is described by connecting the basic elements in 
series or in parallel. 

The Kelvin model results from a parallel combination of a spring and a dashpot 
(Fig. 3.3(a)). A requirement on the interpretation of this and all similar diagrams is 
that the horizontal connectors remain parallel at all times. Hence the extension 
(strain) in the spring is at all times equal to the extension (strain) in the dashpot. 
Then it is possible to set up a balance equation for the forces (stresses) acting on a 
connector. The last step is to write the resulting equation in terms of stresses and 
strains. Hence, for the Kelvin model the total stress a is equal to the sum of the 
stresses in each element. Therefore 

Fig. 3.2 Diagrammatic representations of ideal rheological behaviour: (a) The Hookean spring; (b) The 
Newtonian dashpot. 
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fa) ( b l  
Fig. 3.3 The simplest linear viscoelastic models: (a) The Kelvin model; (b) The Maxwell model. 

in the obvious notation, and using eqns. (3.2) and (3.4) (with Po = G and P, = q) we 
have 

This is identical to eqn. (3.9, which was a very simple case of the general linear 
differential equation (3.1). It is readily seen from the diagram of the Kelvin model 
that after sudden imposition of a shear stress 5, the spring will eventually reach the 
strain given by 5/G, but that the dashpot will retard the growth of the strain and, 
the higher the viscosity, the slower will be the response. 

Another very simple model is the so-called 'Maxwell model' *. The differential 
equation for the model is obtained by making a, and PI the only non-zero material 
parameters, so that 

where we have written a, = 7, and P, = q. 
If a particular strain rate 7 is suddenly applied at t = 0 and held at that value for 

subsequent times, we can show that, for t > 0, 

which implies that on start-up of shear, the stress growth is delayed; the time 
constant in this case is 7,. On the other hand, if a strain rate which has had a 
constant value 7 for t < 0 is suddenly removed at t = 0, we can show that, for t >, 0, 

Hence the stress relaxes exponentially from its equilibrium value to zero (see Fig. 
3.4). The rate constant 7, is called the 'relaxation time'. 

* Recall the discussion in 51.2 concerning the influence of J.C. Maxwell on the introduction of the 
concept of viscoelasticity in a fluid. 
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Fig. 3.4 Decay of stress a following the cessation of steady shear at time t = 0 for a Maxwell model, 
where a. = qv .  

The pictorial Maxwell model is a spring connected in series with a dashpot (see 
Fig. 3.3(b)). In this case, the strains, or equally strain-rates, are additive; hence the 
total rate of shear j. is the sum of the rates of shear of the two elements. Thus 

which leads to 

or, after rearrangement, 

in whlch rM has been written for q/G. This equation is the same as eqn. (3.9) which 
arose as a special case of the general differential equation. 

The next level of complexity in the linear viscoelastic scheme is to make three of 
the material parameters of eqn. (3.1) non zero. If a,, P, and P, are taken to be 
non-zero we have the "Jeffreys model". In the present notation, the equation is 

which has two time constants rM and 7,. With a suitable choice of the three model 
parameters it is possible to construct two alternative spring-dashpot models which 
correspond to the same mechanical behaviour as eqn. (3.15). One is a simple 
extension of the Kelvin model and the other a simple extension of the Maxwell 
model as shown in Fig. 3.5. 

We note with interest that an equation of the form (3.15) was derived mathemati- 
cally by Frohlich and Sack (1946) for a dilute suspension of solid elastic spheres in a 
viscous liquid, and by Oldroyd (1953) for a dilute emulsion of one incompressible 
viscous liquid in another. When the effect of interfacial slipping is taken into 
account in the dilute suspension case, Oldroyd (1953) showed that two further 
non-zero parameters (a, and &) are involved. 
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Fig. 3.5 Spring-dashpot equivalents of the Jeffreys model. The values of the constants of the elements are 
given in terms of the three material parameters of the model (eqn. 3.15). 

t 
(0 l 

Fig. 3.6 The Burgers model: and (b) are equivalent representations of this linear model. 

Finally, in this preliminary discussion of the successive build-up of model 
complexity, we draw attention to the so-called "Burgers model". This involves four 
simple elements and takes the mechanically-equivalent forms shown in Fig. 3.6. 

In terms of the parameters of the Maxwell-type representation (Fig. 3.6(b)), the 
associated constitutive equation for the Burgers model has the form 

In this equation the As are time constants, the symbol A being almost as common as 
T in the rheological literature. 

3.4 The relaxation spectrum 

It is certainly possible to envisage more complicated models than those already 
introduced, but Roscoe (1950) showed that all models, irrespective of their complex- 
ity, can be reduced to two canonical forms. These are usually taken to be the 
generalized Kelvin model and the generalized Maxwell model (Fig. 3.7). The 
generalized Maxwell model may have a finite number or an enumerable infinity of 
Maxwell elements, each with a different relaxation time. 
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lbl 
Fig. 3.7 Canonical spring-dashpot models: (a) Distribution of Maxwell relaxation processes; (b) 
Distribution of Kelvin retardation processes. 

By a suitable choice of the model parameters, the canonical forms themselves can 
be shown to be mechanically equivalent and Alfrey (1945) has given methods for 
computing the parameters of one canonical form from those of the other. In the 
same paper, Alfrey also showed how a linear differential equation can be obtained 
for either of the canonical forms and vice versa. In other words, the three methods 
of representing viscoelastic behaviour (the differential equation (3.1) and the two 
canonical forms of mechanical model of Fig. 3.7 are equivalent and one is free to 
choose any one of them as a basis for generalization to materials requiring a 
continuous infinity of parameters to specify them. 

In order to generalize from an enumerable infinity to a continuous distribution of 
relaxation times, we choose to start with the simple Maxwell model, whose be- 
haviour is characterized by the differential equation (3.9) or what is equivalent 

"I 
o ( t )  = ;/ exp[- (t  - t ')/r] $ ( t f )  dt ' ,  

- 00 

where we have dropped the subscript M in r, to enable us to generalize eqn. (3.17) 
without introducing a clumsy notation. * (See p. 144 for definitions of t and t'). 

Considering next, a number, n, of discrete Maxwell elements connected in 
parallel as in Fig. 3.7(a), we can generalize eqn. (3.17), with the aid of the 

* The integral equation (3.17) is obtained by solving the differential equation (3.9) by standard 
techniques. 
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superposition principle, to give 

where 17, and 7, now correspond to the ith Maxwell element. 
The theoretical extension to a continuous distribution of relaxation times can be 

carried out in a number of ways. For example, we may proceed as follows. 
The "distribution function of relaxation times" (or "relaxation spectrum") N ( r )  

may be defined such that N(r )  d r  represents the contributions to the total viscosity 
of all the Maxwell elements with relaxation times lying between r and r + d r .  The 
relevant equation then becomes (on generalizing (3.18)) 

( t )  = exp[- (t - t ' ) / r ]+ ( t f )  d t '  d r ,  
0 m 

and if we introduce the "relaxation function" +, defined by 

eqn. (3.19) becomes 

~ ( t )  = jr + ( I  - t f ) f  ( t ' )  d t '  
- m 

We remark that we could have immediately written down an equation like (3.21) 
on the basis of Boltzmann's superposition principle. 

It is also possible to proceed from eqn. (3.18) by introducing a distribution 
function H ( r )  such that H ( r )  d r  represents the contribution to the elasticity 
modulus of the processes with relaxation times lying in the interval r and r + dr .  
Further, other workers have used a spectrum of relaxation frequencies H(log F )  
where F = 1/(277r). The relationships between these functions are 

( N ( r ) / r )  d r  = H ( r )  d r  = H(log F) d(10g F ) .  (3.22) 

In a slow steady motion which has been in existence indefinitely (i.e. i. is small, 
and independent of time) eqn. (3.21) reduces to 

0 = 170+, 

where 

s=j r 
0 

- m 
( t  - t ') d t '  = im+ 
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in which .$ has been written for the time interval (t - t'). The variable 5 is the one 
which represents the time-scale of the rheological history. It is also easy to show 
from eqns. (3.19), (3.21) and (3.22) that 

m 
no = / N ( r )  d.i = 

0 
'(log F, d(1og F ) .  / 27rF 

We see from eqn. (3.23) that 11, can be identified with the limiting viscosity at small 
rates of shear, as observed in steady state experiments. Thus, the equations in (3.24) 
provide useful normalization conditions on the various relaxation spectra. It is also 
of interest to note that q0 is equal to the area under the N(r)  spectrum, whilst it is 
equal to the first moment of the H( r )  spectrum. 

3.5 Oscillatory shear 

It is instructive to discuss the response of viscoelastic materials to a small-ampli- 
tude oscillatory shear, since this is a popular deformation mode for investigating 
linear viscoelastic behaviour. 

Let 

where i = m, w is the frequency and yo is a strain amplitude which is small 
enough for the linearity constraint to be satisfied. The corresponding strain rate is 
given by 

and, if this is substituted into the general integral equation (3.21), we obtain 

In oscillatory shear we define a 'complex shear modulus' G * ,  through the equation 

and, from eqns. (3.25), (3.26) and (3.27), we see that 

It is customary to write 
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and G' and G" are referred to as the 'storage modulus' and 'loss modulus', 
respectively. G' is also called the dynamic rigidity. If we now consider, for the 
purpose of illustration, the special case of the Maxwell model given by eqn. (3.9) or 
eqn. (3.14) (with T, = 7) we can show that 

ioq G* = --- iwrG or alternatively G * = ----- , 
1 + iw7 1 + iwr 

and 

G' = 
T,Vw2 

or alternatively G' = 
G W ~ T ~  

1 + 02r2 1 + w2r2' 

G" = 
GUT , or alternatively G" = 

1 + 02r2 1 + w2r2 

To some readers, the use of the complex quantity exp(iwt) to represent oscilla- 
tory motion may be unfamiliar. The alternative procedure is to use the more obvious 
wave-forms represented by the sine and cosine functions, and we now illustrate the 
procedure for the simple Maxwell model. 

Let 

y = yo cosot. (3.33) 

Thus, the strain rate is 

and if this is substituted into the equation for the Maxwell model, a first order 
linear differential equation is obtained, with solution 

u =  noyo ( o r  cosot - sinwt). 
(1 + 02r2)  

The part of the stress in phase with the applied strain is obtained by putting sinwt 
equal to zero and is written G'y. The part of the stress whlch is out ofphase with the 
applied strain is obtained by setting cosot equal to zero and is written (GU/w)T. 
Hence 

in agreement with (3.31) and (3.32) as expected. 
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Returning now to the more convenient complex representation of the oscillatory 
motion, we remark that as an alternative to the complex shear modulus, we can 
define 'complex viscosity' q*, as the ratio of the shear stress o to the rate of shear i.. 
Thus 

and it follows that, for the general integral representation, 

We now write 

noting that qf is usually given the name 'dynamic viscosity'. The parameter q" has 
no special name but it is related to the dynamic rigidity through G' = 7'; It is also 
easy to deduce that G" = q'w. 

It is conventional to plot results of oscillatory tests in terms of the dynamic 
viscosity qf and the dynamic rigidity G'. Figure 3.8 shows plots of the normalized 
dynamic functions of the Maxwell model as functions of wr, the normalized, or 
reduced, frequency. The notable features are the considerable fall in normalized q' 
and the comparable rise in normalized G' which occur together over a relatively 
narrow range of frequency centred on wr = 1. The changes in these functions are 
virtually complete in two decades of frequency. These two decades mark the 
viscoelastic zone. Also, in the many decades of frequency that are, in principle, 
accessible on the low frequency side of the relaxation region, the model displays a 
viscous response (G

f - 0). In contrast, at high frequencies, the response is elastic 
(q' - 0). From Fig. 3.8, the significance of T as a characteristic natural time for the 
Maxwell model is clear. 

log W T  

Fig. 3.8 The Maxwell model in oscillatory shear. Variation of the normalized moduli and viscosity with 
normalized frequency ( r  = v / G ) .  
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In the literature, other methods of characterizing linear viscoelastic behaviour are 
to be found. For example, it is possible to define a 'complex shear compliance' J *. 
By definition 

in an oscillatory shear, with 

It is important to note that, although J * = 1/G*, the components are not similarly 
related. Thus J' # 1/G' and J" # l/G". 

The second alternative method of characterizing linear viscoelastic response is to 
plot G' and the 'loss angle' 6. In t h s  method, it is assumed that for an applied 
oscillatory strain given by eqn. (3.25), the stress will have a similar form, but its 
phase will be in advance of the strain by an angle 6. Then, 

a ( t )  = a,, exp[i(wt + a)]. (3.43) 

It is not difficult to show that 

tan 6 = G"/Gf. (3.44) 

Figure 3.9 shows how 6 and Gf/G (where G = r q )  vary with the normalized 
frequency for the Maxwell model. At high values of the frequency, the response, as 
already noted, is that of an elastic solid. In these conditions the stress is in phase 
with the applied strain. On the other hand, at very low frequencies, where the 
response is that of a viscous liquid, the stress is 90 O ahead of the strain. The change 
from elastic to viscous behaviour takes place over about two decades of frequency. 
T h s  latter observation has already been noted in connection with Fig. 3.8. In Fig. 
3.10, we show the wave-forms for the oscillatory inputs and outputs. Figure 3.10(a) 
represents an experiment in the viscoelastic region. Figure 3.10(b) represents very 
high and very low frequency behaviour where the angle 6 is 0 O or 90 O ,  respectively. 

log W T  

Fig. 3.9 The Maxwell model in oscillatory shear. Variation of the normalized storage modulus and phase 
angle with normalized frequency. 
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Fig. 3.10 Wave-forms for oscillatory strain input and stress output: (a) Solid line (- ) strain 
according to eqns. (3.25) and (3.33); dashed line (- - - - - -) stress in advance by angle 6, according to eqn. 
(3.43); (b) Solid line (- ) strain input and also stress output for elastic behaviour; dotted line 
(. . . . . .) stress output for viscous behaviour. 

Note that although the stress is 90" in advance of the shear strain for the viscous 
liquid, it is in phase with the rate of shear. 

3.6 Relationships between functions of linear viscoelasticity 

In previous sections we have introduced a number of different functions which 
can all be used to characterize linear viscoelastic behaviour. These range from 
complex moduli to relaxation function and spectra. They are not independent, of 
course, and we have already given mathematical relationships between some of the 
functions. For example, eqn. (3.28), which is fairly typical of the complexities 
involved, relates the complex shear modulus G* to the relaxation function 9. 
Equation (3.28) is an integral transform and the determination of @ from G * can be 
accomplished by inverting the transform. There is nothing sophisticated, therefore, 
in determining one viscoelastic function from another: although thls is a statement 
"in principle", and much work has been carried out on the non-trivial problem of 
inverting transforms when experimental data are available only over a limited range 
of the variables (like frequency of oscillation). The general problem of determining 
one viscoelastic function from another was discussed in detail by Gross (1953) and 
practical methods are dealt with by, for example, Schwarzl and Struik (1967). 

Nowadays most experimental data from linear viscoelasticity experiments are 
presented in the form of graphs of components of the dynamic parameters (such as 
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complex modulus) and are rarely transformed into the relaxation function or the 
relaxation spectrum. 

3.7 Methods of measurement 

Two different types of method are available to determine linear viscoelastic 
behaviour: static and dynamic. Static tests involve the imposition of a step change 
in stress (or strain) and the observation of the subsequent development in time of 
the strain (or stress). Dynamic tests involve the application of a harmonically 
varying strain. 

In this section we shall be concerned with the main methods in the above 
classification. Attention will be focussed on the principles of the selected methods 
and none will be described in detail. The interested reader is referred to the detailed 
texts of Walters (1975) and Whorlow (1980) for further information. 

An important point to remember is that, whatever the method adopted, the 
experimenter must check that measurements are made in the linear range; otherwise 
the results will be dependent on experimental details and will not be unique to the 
material. The test for linearity is to check that the computed viscoelastic functions 
are independent of the magnitude of the stresses and strains applied. 

3.7.1 Static methods 
The static methods are either 'creep' tests at constant stress or relaxation tests at 

constant strain (see Figs. 3.11 and 3.12). In theory, the input stress or strain, 
whether it is an increase or a decrease, is considered to be applied instantaneously. 
This cannot be true in practice, because of inertia in the loading and measuring 
systems and the delay in transmitting the signal across the test sample, determined 
by the speed of sound. As a general rule, the time required for the input signal to 
reach its steady value must be short compared to the time over which the ultimate 
varying output is to be recorded. This usually limits the methods to materials which 
have relaxation times of at least a few seconds. A technique for estimating whether 
apparatus inertia is influencing results is to deliberately change the inertia, by 

01 I 

fo t 1 Trme, t 
Fig. 3.11 Typical creep curve of strain y plotted against time t .  A constant stress was applied at r = r, 
and removed at t = 1,. The strain comprises three regions: instantaneous (0 to y,); retardation (y, to 7,); 
constant rate ( y ,  to y,). In linear behaviour the instantaneous strains on loading and unloading are equal 
and the ratio of stress to instantaneous strain is independent of stress; the constant-rate strain (y, to y,) 
is not recovered. 
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Fig. 3.12 Typical relaxation curve of stress a plotted against time t .  A constant strain was applied at 
t = to and reversed at t = t , .  In linear behaviour the instantaneous changes of stress from 0 to a, and a, 
to a,  are equal and the ratio of instantaneous stress to strain is independent of strain. The incomplete 
relaxation at t = t ,  may indicate either that further relaxation would occur in a longer time, or, that the 
material at very low deformation behaves like a Hookean solid and a residual stress would persist 
indefinitely. 

adding weights for example, and checking the effect on the derived viscoelastic 
functions. 

The basic apparatus for static tests is simple. Once the shape and means of 
holding the specimen have been decided upon, it is necessary to apply the input 
signal and measure, and record, the output. It is easier to measure strain, or 
deformation, than stress. Hence, creep tests have been much more common than 
relaxation tests. 

The geometry chosen for static tests depends largely on the material to be tested. 
For solid-like materials, it is usually not difficult to fashion a long slender specimen 
for a tensile or torsional experiment. Liquid-like material can be tested in simple 
shear with the concentric-cylinder and cone- and-plate geometries and constant-stress 
rheometers are commercially available for carrying out creep tests in simple shear. 
Plazek (1968) has carried out extensive experiments on the creep testing of polymers 
over wide ranges of time and temperature. 

3.7.2 Dynamic methods: osci1latory strain 
The use of oscillatory methods increased considerably with the development of 

commercial rheogoniometers, and a further boost was given when equipment 
became available for processing the input and output signals to give in-phase and 
out-of-phase components directly. With modern instruments it is now possible to 
display automatically the components of the modulus as functions of frequency. 

A general advantage of oscillatory tests is that a single instrument can cover a 
very wide frequency range. This is important if the material has a broad spectrum of 
relaxation times. Typically, the frequency range is from l o p 3  to lo3 s-'. Hence a 
time spectrum from about lo3 to l o p 3  s can be covered. If it is desired to extend the 
limit to longer times, static tests of longer duration than 3 hr ( lo4  s) would be 
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Fig. 3.13 Representation of the cone-and-plate apparatus for oscillatory tests. The specimen is positioned 
between the input motion and the output stress. 

needed. The lower relaxation time limit of oscillatory methods can be extended by 
wave-propagation methods (see 5 3.7.3). 

The conventional oscillatory methods involve the application of either free or 
forced oscillatory strains in conventional tensile and shear geometries. An advantage 
possessed by the free vibration technique is that an oscillator is not required and the 
equipment can be fairly simple. On the other hand, the frequency range available is 
no more than two decades. The reason for this is that a change of frequency relies 
on a change in moment of inertia of the vibrating system and the scope for thls is 
limited. The method is readily adaptable to torsional deformation with solid-like 
materials. 

The wide frequency range quoted above is achieved with forced oscillations. We 
show in Fig. 3.13 the most common example of the forced-oscillation experiment, 
although the geometry could equally well be a parallel-plate or concentric-cylinder 
configuration. The test material is contained between a cone and plate, with the 
angle between the cone and plate being small (< 4 O ) .  The bottom member under- 
goes forced harmonic oscillations about its axis and this motion is transmitted 
through the test material to the top member, the motion of which is constrained by 
a torsion bar. The relevant measurements are the amplitude ratio of the motions of 
the two members and the associated phase lag. From this information it is relatively 
simple to determine the dynamic viscosity 7' and the dynamic rigidity G f,  measured 
as functions of the imposed frequency (see Walters 1975 for the details of this and 
related techniques). 

3.7.3 Dynamic methods: wave propagation 
A number of books are available which describe in detail the theory and practice 

of wave-propagation techniques. Kolsky (1963) has dealt with the testing of solids, 
Ferry (1980) has reviewed the situation as regards polymers and Harrison (1976) has 
covered liquids. The overall topic is usefully summarized by Whorlow (1980). 
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Basically, the waves are generated at a surface of the specimen which is in contact 
with the wave generator and the evaluation of the viscoelastic functions requires the 
measurement of the velocity and the attenuation through the specimen. One 
significant advantage of wave-propagation methods is that they can be adapted to 
high frequency studies: they have been commonly used in the kHz region and 
higher, even up to a few hundred GHz. Thls is invaluable when studying liquids 
which behave in a Newtonian manner in other types of rheometer. Such liquids 
include, as a general rule, those with a molecular weight below lo3. They include 
most of the non-polymeric liquids. Barlow and Lamb have made significant contri- 
butions in this area (see, for example, Barlow et al. 1967). 

3.7.4 Dynamic methods: steady flow 
In the oscillatory experiments discussed above, instrument members are made to 

oscillate and the flow is in every sense unsteady. A relatively new group of 
instruments for measuring viscoelastic behaviour is based on a different principle. 
The flow in these rheometers is steady in the sense that the velocity at a fixed point 
in the apparatus is unchanging. (Such a flow is described in fluid dynamics as being 
"steady in an Eulerian sense".) However, the rheometer geometry is constructed in 
such a way that individual fluid elements undergo an oscillatory shear (so that the 
flow is "unsteady in a Lagrangian sense"). A typical example of such an instrument 
is the Maxwell orthogonal rheometer which is shown in Fig. 3.14 (Maxwell and 
Chartoff 1965). It comprises two parallel circular plates separated by a distance h ,  
mounted on parallel axes, separated by a small distance d. One spindle is rotated at 
constant angular velocity 52. The other is free to rotate and takes up a velocity close 
to that of the first spindle. 

The components of the force on one of the plates are measured using suitable 
transducers. In the interpretation of the data it is assumed that the angular velocity 
of the second spindle is also 52. It can then be readily deduced that individual fluid 
elements are exposed to a sinusoidal shear and that the components of the force on 
each plate (in the plane of the plates) can be directly related to the dynamic 
viscosity and dynamic rigidity. 

The Maxwell orthogonal rheometer and other examples of the steady-flow 
viscoelastic rheometers are discussed in detail by Walters (1975). 

Fig. 3.14 Arrangement of rotating plates in a Maxwell orthogonal rheometer. Plate separation h; axis 
displacement d. One spindle rotates at constant velocity 52 and the second spindle takes up (nearly) the 
same velocity. 



CHAPTER 4 

NORMAL STRESSES 

4.1 The nature and origin of normal stresses 

We have already stated in 51.5 that, for a steady simple shear flow given by 

the relevant stress distribution for non-Newtonian liquids can be expressed in the 
form 

The variables a, N, and N2 are sometimes called the viscometric functions. A useful 
discussion of the importance of these functions is given by Lodge (1974, p. 212). In 
this chapter, we shall be concerned with the normal stress differences N, and N2 or, 
equivalently, the so-called normal stress coefficients and \k,, where 

In principle, it is possible for a non-Newtonian inelastic model liquid to exhibit 
normal-stress effects in a steady simple shear flow. The so called Reiner-Rivlin 
fluid, which is a general mathematical model for an inelastic fluid (see §8.4), can be 
used to demonstrate this. However, all the available experimental evidence is that 
the theoretical normal stress distribution predicted by this model, viz. N, = 0, 
N2 + 0 is not observed in any known non-Newtonian liquid. In practice, normal- 
stress behaviour is always that to be expected from models of viscoelasticity, 
whether they be mathematical or physical models. 

The normal stress differences are associated with non-linear effects (cf. 51.3). 
Thus, they did not appear explicitly in the account of linear viscoelasticity in 
Chapter 3. In the experimental conditions of small-amplitude oscillatory shear, in 
which linear viscoelasticity is demonstrated and the parameters measured, the three 
normal stress components have the same value. They are equal to the ambient 
pressure, which is isotropic. Similarly, in steady flow conditions, provided the flow 
is slow enough for second-order terms in j. to be negligible, the normal stresses are 
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again equal to the ambient pressure. As the shear rate is increased, the normal stress 
differences first appear as second-order effects, so that we can write 

where A ,  and B, are constants and, as implied, the normal stress differences are 
even functions of the shear rate p. (The mathematically-minded reader may confirm 
this expectation by undertalung a simple analysis for the hierarchy equations given 
in Chapter 8 (eqns. 8.23-8.25), which are argued to be generally valid constitutive 
equations for sufficiently slow flow). 

From a physical point of view, the generation of unequal normal stress compo- 
nents, and hence non-zero values of N, and N,, arises from the fact that in a flow 
process the microstructure of the liquid becomes anisotropic. For instance, in a 
dilute polymeric system, the chain molecules, which at rest occupy an enveloping 
volume of approximately spherical shape, deform to an ellipsoidal shape in a flow 
field. The molecular envelope before and during deformation is shown in Fig. 4.1. 
The droplets in an emulsion change shape in a similar way. In the polymeric system 
at rest, entropic forces determine the spherical shape whilst the requirement of a 
minimum interfacial free-energy between an emulsion droplet and the surrounding 
liquid ensures practically spherical droplets in the emulsion at rest. It follows 
therefore that restoring forces are generated in these deformed microstructures and, 
since the structures are anisotropic, the forces are anisotropic. The spherical 
structural units deform into ellipsoids which have their major axes tilted towards the 
direction of flow. Thus the restoring force is greater in this direction than in the two 
orthogonal directions. The restoring forces give rise to the normal stress components 
of eqns. 4.2. It can be appreciated, from this viewpoint of their origin, why it is that 
the largest of the three normal stress components is always observed to be a,,, the 
component in the direction of flow. According to the principles of continuum 
mechanics, the components can have any value, but it would be an unusual 
microstructure that gave rise to components whose relative magnitudes did not 
conform to N, 2 0, i.e. a,, 2 a,,. It is conceivable that a strongly-orientated rest- 
structure, as found in liquid crystals, might produce such unusual behaviour in 
certain circumstances. 

AT REST UNDER SHEAR 

Fig. 4.1 The molecular envelope before and during shear deformation. 



4.21 Typical behaoiour of N, and N2 

Fig. 4.2 Viscometric data for a 1% aqueous solution of polyacrylamide (El0 grade). 20°C. Note that, 
over the shear-rate range lo2 to 10' s-', N,  is about ten times larger than a. 

Fig. 4.3 Viscometric data for a polypropylene copolymer. 230 
10' to 10' s-', N, is comparable in magnitude with a. 

O C. Note that, over the shear-rate range 

4.2 Typical behaviour of N, and N, 

In view of the discussion in the previous section of the thermodynamic origin of 
the normal stresses, we expect N, to be a positive function of shear rate i.. All 
reliable experimental data for elastic liquids are in conformity with this and show 
positive values of N, for all shear rates. Figures 4.2 and 4.3 show typical examples 
for a polymer solution and polymer melt, respectively. Note that N, may have a 
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Fig. 4.4 A plot of In N, against In o at various temperatures for the polymer solution D2, which is a 10% 
w/v solution of polyisobutylene (Oppanol B50) in dekalin (cf. Lodge et al. 1987). 

power-law behaviour over a range of shear rates, and we could write (cf. the related 
discussion concerning the shear stress a in 52.3.2) 

where A and m are constants, with m being typically in the range 1 < m G 2. As 
with the shear stress, the power-law region cannot extend to very low shear rates 
(unless m = 2). 

It is clear from Fig. 4.2 that the normal stress difference N,, in this case, is higher 
than the shear stress a and such an observation is not unusual. The ratio of Nl to a 
is often taken as a measure of how elastic a liquid is; specifically N 1 / ( 2 a )  is used 
and is called the recoverable shear. It follows that recoverable shears greater than 0.5 
are not uncommon in polymeric systems. They indicate a ‘highly elastic' state. 

For polymeric systems, it is often found that a plot of In Nl against In a for a 
range of temperatures results in a unique relationship which is a reasonably straight 
line of slope near 2 (see also 56.10 and Fig. 6.12). Figure 4.4 gwes an illustration of 
such behaviour for a polymer solution. A straight line of slope 2 is expected at low 
shear rates in the so-called second-order region but there is no fundamental 
justification for the line to be independent of temperature. Nor is there any 
fundamental justification for this unique relationship to apply, as it often does, 
outside the second-order regime. 

It is generally conceded that the second normal stress difference N2 is small in 
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Fig. 4.5 Viscometric data for a Boger fluid: 0.184% polyisobutylene in a mixture of kerosene and 
polybutene (B.P. Hyvis 30). 25 C. 

comparison to N,. Indeed, for a so-called Boger fluid *, the second normal stress 
difference has been found to be virtually zero (see, for example, Fig. 4.5 and 
Keentok et al. 1980). We also remark that in the early days of normal stress 
measurement (c.1950) N2 = 0 was known as the Weissenberg hypothesis, and, w i t h  
the limitations of the first-generation rheometers, experimental results on a number 
of systems were found to be in reasonable agreement with the hypothesis; the first 
such test being made by Roberts (1953) with a prototype version of the Weissenberg 
rheogoniometer. It is also noteworthy that some of the simpler microrheological 
models for polymeric systems predict N2 = 0 (cf. Chapter 6). With N, > 0, N2 = 0, 
we note that the resulting normal stress distribution is equivalent to an extra tension 
along the streamlines, with an isotropic state of stress in planes normal to the 
streamlines. 

Modem rheometers are capable of determining N2 with a reasonable degree of 
precision, although the level of tolerance is not as high as that associated with the 
determination of a and N,. Non-zero values of N2 can now be detected and 
measured in many systems, but the ratio of I N2 I to N, is usually small ( 6  0.1). 
Present reliable data on polymeric systems all show N2 to be zero or negative: Fig. 
4.6 shows the viscometric functions for a 2% solution of polyisobutylene in decalin 
(the so-called D l  liquid). A comprehensive "round-robin" series of experiments was 
carried out on D l  and the findings are given by Walters (1983) and Alvarez et al. 
(1985). In this round-robin work, different types of instrument were used as well as 
different observers. The excellent agreement between the results shows that with 

* A Boger (1977(a)) fluid is a very dilute solution ( - 0.1%) of a high molecular-weight polymer in a very 
viscous solvent. Although the solution does, in fact, display shear-thinning, the fall in viscosity is very 
small compared to the zero-shear value, and for practical purposes the viscosity appears to be constant 
(see also 87.2). 
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Fig. 4.6 Viscometric data for the polymer solution Dl ,  which is a 2% w/v polyisobutylene (Oppanol 
B200) solution in dekalin. 25 O C (cf. Alvarez et al. 1985). 

modem instruments it is possible to obtain consistency and accuracy in the 
measurement of normal stress components. 

4.3 Observable consequences of N, and N2 

Normal stresses are responsible for a number of effects of laboratory interest and 
of commercial importance. Those included here by way of examples are observable 
with the aid of relatively simple equipment. 

Perhaps the most well known and certainly the most dramatic effect is the 
rod-climbing phenomenon, usually referred to as the 'Weissenberg effect'. It is 
produced when a rotating rod is dipped into a squat vessel containing an elastic 
liquid. Whereas a Newtonian liquid would be forced towards the rim of the vessel 
by inertia, and would thus produce a free surface that is higher at the rim than near 
the rod, the elastic liquid produces a free surface that is much higher near the rod, 
as shown in Fig. 4.7. The observed rise of the surface is independent of the direction 
of rotation. 

The Weissenberg effect may be viewed as a direct consequence of the normal 
stress a,,, which acts like a hoop stress around the rod. This stress causes the liquid 
to "strangle" the rod and hence move along it. The reaction of the bottom of the 
vessel, which should not be sited too far from the end of the rod, adds to the rise of 
the surface up the rod. 

If the geometry of the rod-climbing experiment is changed by adding a flat disc 
to the end of the rod and aligning the disc to be close to, and parallel with, the 
bottom of the vessel, we have the configuration of one of a set of instruments used 
for measuring N, and N,. Such instruments will be described later. Suffice it to say 
here that it can be shown that the strangulation caused by the first normal stress 
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Fig. 4.7 The Weissenberg effect shown by a solution of polyisobutylene (Oppanol B200) in polybutene 
(B.P. Hyvis 07). Reproduced by permission of Shell Research Ltd. 

difference exerts a force between the bottom of the vessel and the disc, tending to 
push them apart. The measurement of this force can be used to yield normal stress 
information. 

If the rod is replaced by a tube, open at both ends and with the disc (with a hole 
in the middle) still in place, the Weissenberg effect causes the elastic liquid to flow 
up the tube (Fig. 4.8). Flow will continue until the normal force is balanced by the 
gravitational force, provided there is enough liquid in the vessel. This is the principle 
of the "normal force pump", which is probably more of a novelty than a practical 
means of dispensing highly-elastic liquids. 

Another phenomenon which can be reproduced with simple equipment, but yet 
has important consequences in manufacturing processes, is 'die swell', sometimes 
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Fig. 4.8 The normal-force pump. 

known as post-extrusion swelling. When an elastic liquid is extruded from a die or 
flows from the exit of a tube, it usually swells to a much greater diameter than that 
of the hole, as shown in Fig. 4.9. In fact, Newtonian liquids can also show die swell, 
but only at low rates of flow (with about a 13% swelling at negligibly small 
Reynolds numbers), and as the flow rate increases the swelling decreases, eventually 
becoming a contraction. In contrast, die swell of an elastic liquid increases as the 

Fig. 4.9 Die swell shown by a solution of 1% polyacrylamide in a 50/50 mixture of glycerol and water. 
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flow rate increases. A swelling of up to two or three times the hole diameter is not 
unusual. 

A convenient way of visualizing the origin of die swell is to consider the elastic 
liquid flowing towards the orifice as a bundle of elastic threads stretched by the a,, 
normal stress component and when they emerge they are free to relax. The 
relaxation causes the threads to shorten in length, hence the bundle increases in 
diameter. 

An important commercial process which is affected by die swell is the manufac- 
ture of rods, tubes and sheets of polymeric material. These articles are made by 
extrusion of molten polymer, which is an elastic liquid. Die swell causes problems in 
the control of the final thickness of the articles. The phenomenon is sensitive to the 
molecular-weight distribution of the polymer and such processing variables as flow 
rate and temperature. Increasing the length of the entry to the nozzle and reducing 
the angle of convergence to it are practical ways of reducing swelling, although at 
the expense of an increased pressure drop. However, die swell cannot be completely 
suppressed, so the satisfactory manufacture of a uniform product requires close 
control of the conditions. 

Finally, we should mention that the measurement of the equilibrium amount of 
die swell produced under fully-controlled experimental conditions forms the basis of 
another method of measuring normal stress differences. There is a close link 
between this method and the method known as jet-thrust. In the latter, the force 
exerted by the emerging jet (of a necessarily mobile liquid), either directly onto an 
intercepting transducer or as a reaction on the flow tube, is related to the die swell 
and therefore also to normal stress levels (see, for example, Davies et al., 1975, 
1977). 

Normal stress effects are also important in those laminar mixing processes which 
involve disc impellers and may occur to some extent with other types. The flow 
pattern for a relatively inelastic liquid results from the interaction between viscous 
and inertial forces and comprises a radial outflow from the central impeller and 
return flows distant from the impeller as shown in Fig. 4.10. However, for a highly 
elastic liquid, the direction of flow can be completely reversed. There are inter- 
mediate cases when both types of flow pattern coexist. In this situation, the flow 
pattern characteristic of the elastic liquid and generated by the normal stresses hugs 
the impeller whilst the inelastic-liquid pattern is found in regions remote from the 
impeller. Examples are given in Fig. 4.10. Obviously, liquid contained in the one 
pattern will not mix very well with liquid in the other. Which type of flow pattern is 
obtained in a given situation depends on the ratio of the elastic forces to the inertial 
forces. This ratio is a dimensionless group which is given by the ratio of the 
Weissenberg number to the Reynolds number ( W,/R ,) *. The dual flow pattern is 
to be found at intermediate values of this ratio. 

* The ' Weissenberg number' W, may be defined as the ratio of the first normal stress difference to the 
shear srress in a steady simple shear flow. 
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Newtonian 

Fig. 4.10 Normal-stress effects in mixing; showing how the form and direction of the circulation are 
affected by increasing elasticity. 

Although the second normal stress difference N, is generally of far less practical 
significance than the first normal stress difference N,, it is important to point out 
that in some situations N2 is very important. For example, it is the function N2(-f) 
which determines whether or not rectilinear flow in a pipe of non-circular cross 
section is possible (see, for example, Townsend et al. 1976). A related problem is 
wire coating, and the importance of N2 in this practical problem has been stressed 
by Tadmor and Bird (1974). 

Such examples of the importance of N2 are rare and apart from those who are 
directly concerned with the situations cited, most practitioners in non-Newtonian 
fluid mechanics tend to confine attention to N,, especially in view of the relative 
difficulty of measuring N,. 

4.4 Methods of measuring N, and N, 

As a generality, the ideal method of measuring normal stress differences would 
involve an uncomplicated shear geometry, which could be easily made, be amenable 
to an exact mathematical analysis, and would enable the normal stress differences to 
be measured separately from shear and inertial forces. It is not possible to achieve 
the ideal, but the methods outlined below are the nearest to it. 
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We have already stated that N, is large in comparison to N, and that the latter is 
the more difficult to measure. For these reasons, it is customary to gve greater 
emphasis to methods for Nl determination, and, in routine laboratory work, to 
confine measurements to Nl. 

The simplest flow is that shown in Fig. 1.1. in connection with Newton's 
postulate. It can be generated by sliding two parallel plates over each other ('plane 
Couette flow'). There has been a limited number of attempts to use this method, but 
it has practical limitations. Mobile liquids may run out of the gap, and it is 
impossible to maintain a continuous shear for very long; hence the method is 
restricted to extremely viscous liquids or (for less-viscous liquids) to very narrow 
gaps, hence high shear rates. In this form of the parallel-plate apparatus, Dealy (see, 
for example Dealy and Giacomin 1988) uses flow birefringence as the means of 
measuring normal stress and he inserts a flush-mounted transducer into the surface 
of one plate to measure the shear stress, free from edge effects. 

In view of the limitations of apparatus constructed for generating the primitive 
simple shear, it is not surprising that a detailed search has taken place for flows 
which are equivalent to steady simple-shear flow in a well-defined mathematical 
sense. These 'viscometric flows' include 'Poiseuille flow' (i.e. steady flow under a 
constant pressure gradient in a pipe of circular cross section), 'circular Couette flow' 
(i.e. steady flow between coaxial cylinders in relative rotation), torsional flow (i.e. 
steady flow between parallel plates, one of which rotates about a normal axis) and 
the corresponding cone-and-plate flow, which will figure prominently in the follow- 
ing discussion. T h s  list is not meant to be exhaustive and the reader is referred to 
Walters (1975), Dealy (1982) and Lodge (1974) for other examples and greater 
detail. 

The proof that all these flows are equivalent to steady simple-shear flow (with the 
stress distribution expressible in terms of a, N, and N,) is non-trivial and has been 
approached from different standpoints by Lodge (1974), Coleman et al. (1966), Bird 
et al. (1987(a) and (b)) and Walters (1975). 

4.4.1 Cone-and-plate flow 
It is probably true to say that the cone-and-plate geometry is the most popular 

for determining the normal stress differences. The basic geometry is shown sche- 
matically in Fig. 4.11 (see also Chapter 2). The test liquid is contained between a 

N o t  stotionary 
Fluid 

\ 

I 
Fig. 4.11 Basic geometry for cone-and-plate flow. 



66 Normal stresses [Chap. 4 

rotating cone and a flat stationary plate. (Alternatively the plate is designed to 
rotate with the cone stationary, with a small advantage as regards alignment). 

With respect to suitably chosen spherical polar coordinates, the physical compo- 
nents of the velocity vector at any point in the liquid are assumed to be (see Fig. 
4.11) 

qr,=O,  u,,,=O, u(,,=r sine 9 ( 8 ) ,  (4.6) 

with the boundary conditions that the angular velocity is zero at the plate surface 
and 9, at the surface of the cone, i.e. 

where do is the gap angle. It can be shown that the flow represented by eqn (4.6) is 
equivalent to a steady simple-shear flow with shear rate j. = sine d9/de, and that, 
when the stress equations of motion are taken into account, we obtain for the shear 
stress a (see, for example, Walters 1975, Chapter 4): 

and, for the normal stress differences, 1 

where p is the density and A is a constant to be determined from the boundary 
conditions. Equations (4.8) and (4.9) are in general incompatible (in the sense that a 
solution to (4.8) will not be a solution to (4.9) and vice versa), unless we make the 
following assumptions: 

(i) inertial effects are negligible, which means setting p = 0 in (4.9); 

(ii) the angle between the cone and the plate is small enough to allow us to set 
cosec28 = 1 in (4.8), which in practical terms means restricting the gap angle 8, to 
be no greater than 4". 

With assumptions (i) and (ii), we have 

i.e. there is a constant shear rate throughout the sample and it is independent of the 
form of the viscometric functions. Equations (4.8) and (4.9) are now compatible. 

It is easy to show that the torque C acting on the stationary plate of radius a is 
given by (cf. Chapter 2) 
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and that if Ji is the pressure on the plate at a radius r, in excess of that due to 
atmospheric pressure, then 

i.e. there is a logarithrmc dependence of ji on r and the slope of the ( p ,  In r )  curve 
can be used to yield N1(?) + 2N2(?). Further, if the pressure is integrated over the 
plate, we obtain the total normal force F on the plate and it can then be shown that 
(Walters 1975, Chapter 4) 

This force acts in the direction of the axis of rotation and pushes the cone and plate 
apart. It is essentially the same force that produces the Weissenberg rod-climbing 
effect. 

The above analysis tells us that the measurement of the rotational speed will give 
the shear rate and that measurement of the torque on the stationary plate will gve 
the shear stress. As regards the normal stress differences, there are two alternatives. 
First, the force F gives N,; secondly the radial distribution of pressure gives 
N, + 2N2. Hence, in principle, the two normal stress differences can be obtained if 
these two alternatives are both used. 

There is a basic conflict in the normal force measurement, since the force F tends 
to separate the cone from the plate. The consequence of such a separation, if it were 
allowed, is to upset the condition of uniform shear rate throughout the sample and 
to reduce the mean value of shear rate. The ideal measuring system should be rigd 
to axial forces. For systems which are not rigid, a servo-mechanism is used to 
maintain the cone-plate gap. 

Various potential sources of error have to be borne in mind when performing 
experiments in the cone-and-plate geometry. The more important are enumerated 
below and we refer the reader to the texts of Walters (1975) and Whorlow (1980) for 
further details. 

I Inertial effect 
The origin and nature of the effect of inertia has already been mentioned. It gives 

rise to the so-called "negative normal stress effect", whereby the plates are pulled 
together and the measured value of the force F is smaller than the true value. The 
reduction in the force F is given by (Walters 1975) 

This formula is used to correct experimental values: it can be seen that it is sensitive 
to the rotational speed and very sensitive to the plate radius. 
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11 Hole-pressure error 
A major source of error whlch can arise when the pressure-distribution method is 

used is known as the hole-pressure error (Broadbent et al. 1968). Any method of 
measuring pressure which relies on the use of a hole in the bounding surface gives a 
low result with elastic liquids owing to the stretching of the flow lines as they pass 
over the hole. The reduction is directly related to N, and is in fact used as a means 
of measuring N,. This method is described later in this chapter, where a more 
detailed description is given. The error is avoided by the use of stiff, flush-mounted 
pressure transducers. 

111 Edge effects 
"Shear fracture" places an upper limit on the usable shear rate range for highly 

elastic materials like polymer melts. It is observed as a sharp drop in all stress 
components, and at the same time a change in shape of the free surface can be seen, 
as well as a rolling motion in the excess liquid around the rim of the plates. A 
horizontal free surface forms in the test sample at the rim and grows towards the 
centre, hence reducing the sheared area. The limiting shear rate can be quite low, 
depending on the liquid and the cone dimensions. Expressed as a critical normal 
stress N,('), the limit is given by 

where c is a constant of the liquid. For a given liquid, shear fracture is minimized if 
the cone radius and gap angle are small. 

The name "shear fracture" was given to the effect by Hutton (1965) owing to its 
similarity to 'melt fracture', which limits the occurrence of steady flow of polymer 
melts in tubes. Tordella (1956) made the first systematic study of melt fracture and 
noted that when the effect is severe the stream of melt breaks up with an 
accompanying tearing noise. 

Another edge effect, also pointed out by Hutton (1972) is ascribable to changes 
in contact angle and/or surface tension of the test liquid brought about by shear. 
The effect is of potential importance when the test liquid possesses only small 
normal stresses. 

I V Miscellaneous precautions 
The alignment of the cone axis to be coincident with the rotational axis, the 

setting of the cone tip in the surface of the plate, and the minimizing of, or 
correction for, viscous heating are other important matters to be taken into account 
in accurate work. 

4.4.2 Torsional flow 
Torsional flow is shown schematically in Fig. 4.12 (see also Chapter 2). Clearly, 

commercial instruments which are designed to work in a cone-and-plate mode can 
be easily adapted to the parallel-plate geometry and vice versa. 
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Fig. 4.12 Basic geometry for torsional flow. 

In this case, with respect to suitably defined cylindrical polar coordinates, the 
velocity distribution can be taken to be 

u,,, = 0, q,, = r o ( z ) ,  u(;) = 0, (4.16) 

subject to the boundary conditions at the two plates 

where h is the gap between the plates. 
Taking into account the fact that eqn. (4.16) is equivalent to a steady simple-shear 

flow, the stress equations of motion are satisfied, with the shear rate given by 

+ = rL?,/h,  (4.18) 

provided 

Equation (4.18) implies that the shear rate is independent of the viscometric 
functions: it depends on radial distance r ,  but is constant across the gap for fixed r .  
Thls time, we see from eqn. (4.19) that we have to neglect inertia for compatibility 
and there is no essential restriction on the gap h,  except of coufse that this must not 
be too large that edge effects in a practical rheometer become important. The edge 
effects mentioned in connection with the cone-and-plate instrument apply here. 

After some routine mathematics, it is possible to show that the viscosity function 
can be determined from measurements of the torque C through the equation (cf. 
Chapter 2): 

where ig is the shear rate at the rim ( r  = a). It can also be shown that 



70 Normal stresses [Chap. 4 

where F is again the total normal force on the plates. We see that total-force data 
yield the combination Nl - N2 at the shear rate i., at the rim. Clearly, total force 
measurements taken in the cone-and-plate and parallel-plate geometries can be 
combined to yield Nl and N2 separately. However, since N2 is small and two 
separate experiments have to be performed, significant scatter in the final data can 
be anticipated unless there is very refined experimentation. 

Of interest is the fact that, in principle, relatively high shear rates can be attained 
with small gaps h.  This has been utilized in the so-called "torsional balance 
rheometer" of Binding and Walters (1976) to obtain normal stress data at shear 
rates in excess of lo4  s-'. In this form of the instrument, a predetermined external 
normal force is applied to the upper plate and the separation h is allowed to vary 
until this force balances the normal force generated by the liquid. Gap h is 
measured and eqns. (4.20) and (4.21) applied. 

4.4.3 Flow through capillaries and slits 
A consistent theory for normal stress measurement in flow through a capillary is 

available (cf. Walters 1975, Chapter 5), but this depends critically on the flow being 
"fully developed" at the exit to the capillary, by which we mean that the Poiseuille 
flow generated away from the influence of end effects should be maintained right up 
to the capillary exit with no rearrangement of the velocity profile. Furthermore, the 
experimental results have to be carried out with flush-mounted pressure tranducers 
to avoid the hole-pressure error problem, and this is difficult on the curved walls of 
a capillary. Therefore, the use of the potentially attractive exit-pressure measure- 
ment technique of determining normal stress data is controversial (cf. Boger and 
Denn 1980). The associated jet-thrust technique for low viscosity elastic liquids and 
high shear rates is also based on the assumption of fully developed flow at the 
capillary exit (cf. Davies et al. 1975, 1977). 

In the Lodge (1988) stressmeter, which uses pressure-driven flow through a slit, 
the hole-pressure error mentioned above is turned to good use in the measurement 
of N,. As liquid flows past the hole under an applied pressure gradient, streamlines 
adjacent to the boundary wall are deviated into and then out of the hole, as shown 
in Fig. 4.13. For an elastic liquid the deviation is viewed as a stretching by the 
normal stress component acting along the streamlines. The net result is a lowering 
of the pressure in the hole. The holes in the stressmeter are a pair of slots set across 
the flow direction as shown in Fig. 4.13. The reduction in pressure A p  is measured 

Fig. 4.13 Schematic diagram of the Lodge stressmeter for normal stress and shear stress measurement. 
The dotted lines represent the tension in the streamlines resulting in a lowered pressure in the holes. 
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(as p, -p,) between the bottom of the hole beneath one of the slots and a 
flush-mounted transducer whose diaphragm forms the boundary wall on the oppo- 
site side of the slit. The difference in pressure in the two slots (p, -p,) gives the 
shear stress. 

It has been shown theoretically that Ap is given by (cf. Tanner and Pipkin 1969) 

for a second-order simple-fluid model (which will be shown in $8.5 to be a valid 
slow-flow approximation for a general class of elastic liquid). The generalization of 
eqn. (4.22) embodied in the so called HPBL equation is used to interpret results for 
flows which are certainly outside the "slow-flow" regime. The interpretation of 
results is accordingly based on what must be seen as an empirical equation, with no 
theoretical justification except at low shear rates. However, it appears to work well, 
judged by recent comparative studies with other instruments (Lodge et al. 1987), 
and shear rates as high as lo6 s-' have been reached with multigrade motor oils 
with this technique. 

4.4.4 Other flows 
Tanner (1970) has proposed that the free surface shape in gravity-driven flow 

down an open tilted trough can be used to calculate the second normal stress 
difference N,. In general terms, if the free surface rises near the centre, N, is 
negative and, if it falls, N, is positive. The interpretation of data is not trivial, but 
the technique provides a convenient method of determining estimates of N, at low 
shear rates. 

Circular Couette flow between rotating cylinders is popular in the determination 
of the viscosity of non-Newtonian liquids (cf. $2.4). Attempts have also been made 
to employ the flow to determine normal stress information from pressure readings 
(Broadbent and Lodge 1972). The fact that the technique has not been popular with 
experimentalists since the original paper is probably an indication of the difficulty 
of using the technique, or it at least points to the fact that much easier methods are 
available in rotational rheometry using, for example, cone-and-plate flow. 

4.5 Relationships between viscometric functions and linear viscoelastic functions 

Earlier in this chapter we argued that normal stress differences in a simple-shear 
flow were a direct consequence of viscoelasticity. We recall from $3.5 that viscoelas- 
ticity can also be studied through a small-amplitude oscillatory-shear flow, the 
resulting stress distribution for an elastic liquid being expressible in terms of the 
dynamic viscosity -IJ' and the dynamic rigidity G'. Now, since the departure from a 
Newtonian response in the viscometric functions -IJ, Nl and N, and in the dynamic 
functions -IJ' and G' can be ascribed to viscoelasticity, we should not be surprised to 
find that there are relationships between the various rheometrical functions. In fact, 
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Fig. 4.14 The Cox-Merz rule applied to the polymer solution Dl,  which is a 2% w/v polyisobutylene 
(Oppanol B200) solution in dekalin. 25 C. 

it is not difficult to deduce the exact relationships in the lower limits of frequency 
and shear rate: 

The former relationship states that the viscosity measured in oscillatory shear in the 
zero-frequency limit is equal to the low shear viscosity measured in steady shear. 
Equation (4.24) is a relationship between the limiting values of dynamic rigidity and 
first normal stress difference. 

In many cases, it is easier to carry out dynamic measurements than steady shear 
measurements and (4.23) and (4.24) provide a means of estimating the levels of TJ 

and !PI (and hence N,) from measurements of TJ' and G'. 
We note that in view of eqn. (4.23) and the fact that both g and TJ' are usually 

monotonic decreasing functions of i. and w, respectively, various attempts have 
been made to develop empirical relationships between TJ and TJ' at other than the 
lower limits of shear rate and frequency. The most popular, and most successful in 
this respect, certainly for polymeric liquids, is the so-called Cox-Merz (1958) rule, 
which proposes that TJ should be the same function of j. as 1 q* I is of a, where 1 g* I 
is the modulus of the complex viscosity, i.e. 
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Fig. 4.15 A test of the relationship of eqn. (4.24) showing the asymptotic approach of the oscillatory and 
steady shear parameters. Steady shear and dynamic data for the polymer solution D3, which is a 1.5% 
w/v polyisobutylene (Oppanol B200) solution in dekalin. 20 C. 

In Fig. 4.14 we provide an example of the application of the Cox-Merz rule to a 
polymer solution. 

In view of (4.24) and the fact that both G' and N1 are monotonic increasing 
functions of w and y, respectively, we might be led to expect that a relationship 
analogous to the Cox-Merz rule will hold between G' and Nl (see, for example, 
56.10 and cf. Al-Hadithi et al. 1988). The limiting relationship (4.24) has been 
confirmed many times and Fig. 4.15 provides just one example of this for a 
polymeric liquid, where we see that the values of N 1 / 2 y 2  and G'/u' coincide at low 
values of j, and w. 



CHAPTER 5 

EXTENSIONAL VISCOSITY 

5.1 Introduction 

The subject of 'extensional' (or 'elongational') flow received scant attention until 
the mid 1960s. Up to that time rheology was dominated by shear flows. In the last 
twenty years or so the situation has changed dramatically with the dual realization 
that extensional flow is of significant relevance in many practical situations and that 
non-Newtonian elastic liquids often exhibit dramatically different extensional flow 
characteristics from Newtonian liquids. Accordingly, interest in the subject has 
mushroomed and much effort is now expended in trying to measure the extensional 
viscosity of non-Newtonian liquids, whether they be "stiff' systems like polymer 
melts or "mobile" systems like dilute polymer solutions, suspensions and emulsions. 
The general subject is covered in the book by Petrie (1979) entitled "Elongational 
Flows ". Petrie's book requires more than a passing acquaintance with mathematics 
to be fully appreciated, but there is sufficient general detail in the book to make it 
important reading for anyone requiring a thorough knowledge of the subject. The 
works of Dealy (1982), Cogswell (1981), Meissner (1983, 1985), Miinstedt and Laun 
(1981, 1986) are also important sources of information for those whose direct 
concern is polymer melts. 

Unlike the situation in steady simple shear and oscillatory shear (see Chapters 
2-4) where the subjects are mature, the study of extensional flow is still evolving. 
This is reflected in the slightly different style of the present chapter. 

For the velocity field (see Fig. 5.l(a)) 

where i is a constant extensional strain rate, the corresponding stress distribution 
can be conveniently written in the form 

where 17, is the (uniaxial) extensional viscosity. In general, it is a function of the 
extensional strain rate i, just as the shear viscosity is a function of shear rate i. 
($2.3). However, we shall see that the behaviour of the extensional viscosity function 
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Fig. 5.1 The three different types of extensional flow fields are shown by the arrows: (a) Uniaxial; (b) 
Biaxial; (c)  Planar. 

is frequently qualitatively different from that of the shear viscosity. So, for example, 
highly elastic polymer solutions that possess a viscosity that decreases monotoni- 
cally in shear (showing shear-thinning) often exhibit an extensional viscosity that 
increases dramatically with strain rate. 

A fluid for which 71, increases with increasing i is said to be 'tension-thickening', 
whilst, if 71, decreases with increasing i ,  it is said to be 'tension-thinning'. 

Experimentally, it is often not possible to reach the steady state implied in (5.1) 
and (5.2). Under these circumstances, it is convenient to define a transient exten- 
sional viscosity GE(t, i), which is clearly a function of t as well as i. This arises 
from the obvious analogue to (5.2) given that the extensional flow field (5.1) is 
initiated at time t = 0 and maintained thereafter. In some respects this is a 
disappointing admission of difficulties which certainly do not normally occur in the 
measurement of the shear viscosity ~ ( y ) .  However, a study of ?jE(t, i )  can still 
throw considerable light on the rheological response of non-Newtonian liquids. It is 
also not without its industrial relevance, since in many practical situations liquids 
are exposed to extensional flow fields over a limited period of time only (see, for 
example, Bird et al. 1987(a) and Laun and Schuch 1988). 

Another type of extensional deformation is the so-called biaxial extension, given 
by (see Fig. 5.l(b)) 

where i is a constant. This type of extension is equivalent to stretching a thin sheet 
of material in two orthogonal directions simultaneously, with a corresponding 
decrease in the sheet thickness. It is found (approximately) when a circular free jet 
impinges on a flat plate or in a lubricated squeeze-film flow (see, for example, 
Soskey and Winter 1985) and when a balloon is inflated. The stress field corre- 
sponding to (5.3) can be written in the form 
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where qEB is the biaxial extensional viscosity. It can be shown that (Walters 1975, p. 
21 1) 

Finally, a two-dimensional planar extensional flow given by (see Fig. 5.l(c)) 

where i is a constant, yields a planar extensional viscosity qEp: 

This type of extension is equivalent to stretching a thin flat sheet of material in one 
direction only (the x direction), with a corresponding contraction in its thickness in 
the z direction, but with no change in the width of the sheet. Planar extensional flow 
can be shown to be equivalent to that generally known as "pure shear" (see, for 
example, Walters 1975, Chapter 7). 

In the present book, our general concern will be the uniaxial extensional viscosity 
q E  and its comparison to the equivalent shear viscosity. Fuller details about subjects 
not enlarged on here are provided in the texts of Petrie (1979), Walters (1975), 
Tanner (1985) and Bird et al. (1987(a) and (b)). 

5.2 Importance of extensional flow 

In polymer processing (see §6.11.1), a case can be made out that some operations 
involve a significant component of extensional flow, with the obvious conclusion 
that the measurement of extensional viscosity may sometimes be as important as the 
determination of the shear viscosity. This will become increasingly so as manufac- 
turers attempt to further increase production rates. 

Any reasonably abrupt change in geometry in a processing operation will 
generate a flow with an extensional component and, in particular, flows through a 
sudden contraction or out of an orifice often lead to flow characteristics which 
cannot be predicted on the basis of shear viscosity alone. The polymer engineer 
must, therefore, have a working knowledge of extensional flow and must, if possible, 
know whether the materials he is processing are tension-thinning or tension-thicken- 
ing. Certainly, the 'spinnability' of a polymeric liquid can be very dependent on its 
extensional viscosity behaviour. To illustrate this, consider the fibre-spinning pro- 
cess shown schematically in Fig. 5.2. It is clearly important for the process, which is 
dominated by extensional flow, to be stable and for the threadline not to snap. The 
tension along the threadline is obviously chosen to prevent fracture under normal 
operating conditions and the main concern is with the propagation and magnifica- 
tion of small disturbances, which are to some extent unavoidable in a physical 
process of thls sort. 
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Fig. 5.2 The filament-necking imperfection in fibre spinning. 

The stability of a spinning threadline is a vast area of study (see, for example, 
Petrie 1979) and we shall do no more than isolate one possible cause for concern. 
Let us speculate that for some reason a change in diameter occurs. From simple 
continuity considerations we would expect the narrower part of the filament to 
move faster than the rest of the threadline. Put in another way, the extensional 
strain rate will now be higher in the narrow part. If the polymeric liquid is 
tension-thinning, the resistance to extension is reduced in the narrow part and 
motion in this part of the threadline is further accelerated. It becomes thinner and 
may ultimately break. 

If, on the other hand, the polymeric liquid is tension-thickening, the resistance in 
the narrow part of the filament will now be increased. The flow in the filament will 
slow down, the radius will increase and may be expected to return to that of the 
remainder of the threadline. Tension-thickening is therefore a stabilizing influence 
in this process. 

Other examples of the importance of extensional viscosity in polymer processing 
could be cited. Certainly, the polymer engineer needs to be aware of the fact that 
two polymeric liquids which may have essentially the same behaviour in shear can 
show a different response in extension. 

Later in this chapter we shall see that there is sufficient theoretical and experi- 
mental evidence available to support the view that very dilute solutions of flexible 
polymers can have extremely high extensional viscosities. Certainly, these can be 
orders of magnitude higher than those expected on the basis of Newtonian theory. 
This has important consequences in a number of practically important situations. 
For example, it may significantly affect the pressure losses encountered in polymer 
flooding in "enhanced oil recovery" (EOR) (see 56.11.3). Further, it may be the 
cause of the phenomenon known as "drag reduction". When small concentrations 
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Fig. 5.3 The 4-roll mill experiment. Schematic representation of the fluid velocities for: (a) A Newtonian 
liquid; (b) A highly elastic liquid, for which high extensional stresses at A and B reduce the inflow. 

(of the order of a few parts-per-million) are added to a Newtonian solvent like 
water, there is often a substantial reduction in drag in turbulent flow (Tanner 1985, 
p. 423). Drag reduction is of potential importance in many spheres. For example, 
small quantities of polymer may be injected into sewers during heavy rain to 
upgrade flow and so prevent flooding. 

Many different mechanisms have been proposed to account for the phenomenon 
of drag reduction, but it may be linked to extensional viscosity and in particular to 
the suppression of the roll-wave motion and vortex stretching in the sublayer by the 
high extensional viscosity. 

The potential importance of extensional viscosity effects in such processes as 
calendering and paper coating is suggested by the four-roll mill experiments 
discussed by Metzner and Metzner (1970) (see Fig. 5.3). 

When the four-roll mill is immersed in a Newtonian liquid, the expected flow 
regime shown in Fig. 5.3(a) is observed. However, in the case of some dilute 
polymer solutions, the flow shown in Fig. 5.3(b) more adequately reflects the 
observations. The flow at A and B is too "strong" to permit substantial amounts of 
fluid to enter as in Fig. 5.3(a). Specifically, the anticipated flow has a high 
extensional component which results in high extensional stresses. The shear stresses 
generated by the rotating rollers are not strong enough to overcome the large 
extensional stresses and a reversed flow results at A and B. 

Further examples of anomolous flow characteristics caused by high extensional 
viscosities are given in 55.6. 
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Finally, we remark that extensional flow experiments can be viewed as providing 
critical tests of any proposed constitutive equations. Indeed, the historical conven- 
tion of matching only shear flow data with theoretical predictions in constitutive 
modelling may have to be rethought in those areas of interest where there is a large 
extensional contribution. It may be more profitable to match any extensional 
viscosity data which may be available, even if this means that the resulting 
constitutive model loses some of its predictive value so far as shear data are 
concerned. 

5.3 Theoretical considerations 

Continuum mechanics is able to provide some useful insights into the exten- 
sional-viscosity behaviour of non-Newtonian liquids. For example, the following 
limiting relations between extensional and shear viscosities are true (cf. Walters 
1975, Petrie 1979) 

We note that these relationships are valid for all values of i and ? in the case of 
Newtonian liquids. In particular, for Newtonian liquids, 

a result obtained by Trouton as early as 1906. Accordingly, rheologists have 
introduced the concept of the 'Trouton ratio' TR defined as 

Elastic liquids are noted for having hlgh Trouton ratios, but the definition as given 
in eqn. (5.11) is somewhat ambiguous, since it depends on both i and P, and some 
convention has therefore to be adopted to relate the strain rates in extension and 
shear. To remove this ambiguity and at the same time provide a convenient estimate 
of viscoelastic effects, Jones et al. (1987) have proposed the following definition, 
based on a simple analysis for an inelastic non-Newtonian fluid: 

i.e., in the denominator, the shear viscosity is evaluated at the shear rate numerically 
equal to fii .  Jones et al. show that if the fluid is inelastic and isotropic, TR is 3 for 
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all values of i .  They argue that any departure from the value 3 can be associated 
unambiguously with viscoelasticity, so that the definition (5.12) not only removes 
the ambiguity in the definition of the Trouton ratio, but also provides a convenient 
means of estimating viscoelastic response. 

Variable (shear) viscosity effects are accommodated in the analysis of Jones et al., 
which illustrates convincingly that a fluid that is shear-thinning must also be 
expected to be tension-thinning in extension, if uiscoelastic effects are negligible or 
very small. 

Continuum mechanics also supplies a limiting relationship between the exten- 
sional viscosity q E  and the normal stress coefficients !PI and 'k, as determined in 
shear flow. A simple analysis for the so-called second-order model (which is argued 
in $8.5 to provide a general description of non-Newtonian behaviour in sufficiently 
slow flow) leads to the following relation: 

Available experimental evidence from shear-flow rheometry (cf. $4.2) would indi- 
cate that 

so we expect 

for non-Newtonian elastic liquids. This is important, since it indicates that the 
extensional viscosity q E  must be an increasing function of i for very small values of 
i, i.e. initial tension-thickening must be anticipated for all elastic liquids satisfying 
(5.14), whatever the response at higher values of i may be. 

Bird (1982) has made the interesting observation that it is usually easier to 
calculate theoretically the extensional flow characteristics of molecular models than 
the corresponding shear flow functions. He has also provided a useful summary of 
the q E  predictions for various molecular models of polymeric liquids. Many of them 
predict infinite extensional viscosities at a finite value of the extensional strain rate 
(cf. the predictions in Table 8.3). Partly to overcome this problem, Phan Thien and 
Tanner (1977) proposed a model which allows q, to pass through a maximum 
rather than take infinite values. For general and future interest, we show in Fig. 5.4 
schematic q E  and qEp curves computed for the so-called PTT model. Interestingly, 
although the initial values of 17, and qEp are different at low strain rates, in 
agreement with eqns. (5.8) and (5.9), they are indistinguishable at high strain rates. 

The general observation concerning the relative ease of carrying out theoretical 
work on the extensional flow characteristics of molecular models is also illustrated 
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Fig. 5.4 Showing how the planar, v,,, and uniaxial, qE,  extensional viscosities vary with strain rate i for 
the Phan-Thien-Tanner (PTT) model. 

by the important work of Batchelor (1970, 1971) on suspensions of slender particles. 
He showed that the extensional viscosity for such systems can be very high, 
depending on the aspect ratio of the particles. 

5.4 Experimental methods 

5.4.1 General considerations 
It is generally agreed that it is far more difficult to measure extensional viscosity 

than shear viscosity, this being especially so for mobile liquids. There is therefore a 
gulf between the strong desire to measure extensional viscosity and the likely 
expectation of its fulfilment. 

Concerning experimentation, we remark that, in the case of stiff systems, the 
basic problem is not one of exposing the sample to a uniaxial extensional flow, but 
rather of maintaining it for a sufficient time for the stress (in a controlled strain-rate 
experiment) or the strain rate (in a controlled stress experiment) to reach a steady 
state, thus enabling the steady extensional viscosity q, to be determined. This is 
nowhere better illustrated than in the careful experimentation on the LDPE sample 
commonly referred to as IUPAC A (see, for example, Meissner et al. 1981, and Fig. 
5.12). Extensive early work up to Hencky strains * of 5 or 6 seemed to indicate that 
an equilibrium had been reached, thus permitting the calculation of q E  However, 
further experiments involving strains of up to 7 have indicated that the "equi- 
librium" was in fact a "turning point" and the ultimate equilibrium value of qE, if 
it exists, must be lower than the original (overshoot) value (see, for example, 
Meissner et al. 1981, Meissner 1985). However, the new data do not point unam- 
biguously to a new equilibrium value and Bird et al. (1987(a), p. 135) stress the 

* The Hencky strain c is defined as ln(L/Lo) where L is the final length of the sample whose original 
length is Lo. 
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general difficulty of reaching a steady state in extension for many polymer melts, 
questioning whether a meaningful extensional viscosity exists for some materials 
and conditions. Fortunately, a knowledge of the transient function i jE( t , i )  may be 
sufficient (or at least very useful) in many practical applications (cf. Bird 1982, 
Laun and Schuch, 1988). 

When it is realized that the Hencky strain of 7 reached in the Meissner 
experiments corresponds to stretching the sample to 1100 times its original length, 
the difficulties involved in extensional rheometry become self-evident. 

The problems of determining the extensional viscosity of mobile liquids are even 
more acute, but they are of a different type from those experienced for stiff systems. 
With mobile liquids, severe difficulties arise in trying to achieve a continuous 
extensional flow field which approximates that given in eqs. (5.1). The most that one 
can hope for is to generate a flow which is dominated by extension and then to 
address the problem of how best to interpret the data in terms of material functions 
that are rheologically meaningful. 

Fortunately, for many mobile elastic liquids, the extensional viscosity levels are 
so high (and potentially important) as to justify such an approach. This fact has 
spawned a number of extensional rheometers in recent years and most of them are 
able to capture the high extensional viscosities which are known to exist. The main 
outstanding problem is to assess critically the " viscosities" arising from the various 
methods and to see whether a concensus emerges. This is under active consideration 
(Walters 1988). 

5.4.2 Homogeneous stretching method 
The homogeneous stretching method, illustrated in Fig. 5.5, was the first to be 

used to determine the extensional viscosity. 
A major (unavoidable) disadvantage of this method is that, in order to attain a 

constant extensional strain rate in the sample, the velocity of the movable block 
must vary exponentially with time. In principle this can now be accomplished very 
easily with the most recent electronic-control techniques, but the accelerating 
motion of the clamp places a severe constraint on the strain rates whch can be 
attained, given the requirement that the motion must be sustained for a sufficient 
time for the stress (which is measured at either the stationary or the moving block) 
to reach a steady value. 

For practical reasons the overall deformation is clearly restricted in the conven- 
tional stretching method of Fig. 5.5. The Meissner (1972) apparatus shown in Fig. 
5.6 goes some way to overcoming this problem (see also Laun and Miinstedt 1978). 
Instead of end loading, constant stretching is provided by two sets of toothed wheels 

stationary' block test ~ o v o h l e  block 

Fig. 5.5 Schematic diagram of the homogeneous stretching method. 
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Fig. 5.6 Schematic diagram of the Meissner apparatus for attaining high strains (see, for example, 
Meissner 1972). Note that the stretched specimen is supported by a suitable liquid. 

which rotate with constant angular velocity. The stress can be measured by the 
deflection of a spring F, associated with one pair of rollers. 

Using this method on polymer melts, Meissner (see, for example, Meissner 1985) 
has been able to reach Hencky strains as high as 7. A further recent development 
has involved the use of a series of clamps in the form of a ring. In this way other 
modes of (multiaxial) extensional deformation can be generated (Meissner 1985). 

The homogeneous stretching method is clearly restricted to high-viscosity sys- 
tems. 

5.4.3 Constant stress devices 
The instruments shown schematically in Figs. 5.5 and 5.6 are of the constant 

strain-rate type. An alternative technique, first introduced by Cogswell (1968) and 
developed later by Miinstedt (1975, 1979) utilizes a constant stress, whlch is brought 
about by applying a force to the movable block in Fig. 5.5, the force decreasing in 
proportion to the cross-sectional area of the extending specimen. Cogswell exployed 
this method using a cam to apply a programmed load, together with a convenient 
means of measuring the length of the sample as a function of time. 

It is interesting to note that as a general rule the constant stress devices reach the 
steady-state elongational flow regime at smaller total deformations than the con- 
stant strain-rate devices. For example, Laun and Schuch (1989) quote that a strain 
of 3.5 was required to reach equilibrium in a constant stress experiment on an 
LDPE melt whereas a strain of 4.5 was required in the comparable constant 
strain-rate experiment. 

The constant stress devices are also clearly restricted to high-viscosity systems. 

5.4.4 Spinning 
It is self-evident that fibre spinning involves a significant extensional-flow 

component. At the same time, it is extremely difficult (if not impossible) to interpret 
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Fig. 5.7 Schematic diagram of the spin-line rheometer 

the data unambiguously in terms of the extensional viscosity q ,  defined in eqns. 
(5.2). The problem is that, although the flow may be steady in an Eulerian sense (in 
that the velocity at a fixed distance down the threadline does not vary with time) it 
is unlikely to be steady in a Lagrangian sense (since the strain rate experienced by a 
given fluid element will generally change as it moves along the threadline). Further- 
more, even when the strain rate is constant over a portion of the threadline (so that a 
given fluid element is exposed to a constant strain rate for a limited period of time) 
that element may still "remember" conditions experienced in the reservoir in the 
case of highly elastic liquids. Certainly, there is ample evidence that a change of 
conditions in the spinnerette can significantly affect the response along the thread- 
line under some conditions. 

The fibre-spinning experiment (Fig. 5.7) is therefore a typical illustration of the 
dilemma facing rheologists who are interested in extensional-viscosity measurement. 
It is relatively easy to perform, the general kinematics can be determined with 
relative ease, and a suitable stress variable can be obtained from force measure- 
ments on the reservoir or the take-up device (see, for example, Hudson and 
Ferguson 1976, Jones et al. 1987). However, a consistent quantitative interpretation 
of the experimental data in terms of the extensional viscosity 17, defined in eqns. 
(5.2) is not possible. One can certainly define an extensional viscosity by dividing 
the measured stress by (say) an average value of the strain rate (Jones et al. 1987). 
Given the difficulties encountered in measuring extensional viscosity and the scale 
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of the viscoelastic response in such a flow, the proposed course of action can be 
justified and may be all that is required in many circumstances. 

The spinning technique can be used for polymer melts (see, for example, Laun 
and Schuch 1989) and for low viscosity liquids (Jones et al. 1987). In the commercial 
spin-line rheometer (see, for example, Ferguson and El-Tawashi 1980) the wind-up 
device is a rotating drum. A variant of this for very mobile liquids is to use a suction 
device (Gupta and Sridhar 1984). 

5.4.5 Lubricated flows 
A schematic diagram of the lubricated-die rheometer is given in Fig. 5.8. The 

shape of the test section is so designed that the flow is equivalent to steady 
extensional flow if there is perfect slip at the walls. To facilitate this, lubricant 
streams of low-viscosity Newtonian liquids are employed. Pressure measurements 
provide the relevant stress input. 

This would seem to be a convenient technique for eliminating the unwanted 
shearing induced by the rheometer walls, thus providing a flow close to the desired 
extensional flow. However, the interface boundary condition between the sample 
and the lubricant is dependent on the rheological properties of the sample. The 
interpretation of experimental data is therefore not without its problems and the 
technique itself is far from easy to use (see, for example, Winter et al. 1979, 
Williams and Williams 1985, Jones et al. 1987). 

A similar technique has also been used by Winter (see, for example, Soskey and 
Winter 1985) to study biaxial extensional flows of polymer melts. In this case 
uniform discs of the sample are placed between two parallel circular plates, both of 

Fig. 5.8 Schematic diagram of the lubricated-converging-flow rheometer; the shape of the channel walls is 
chosen such that the flow is equivalent to a pure extensional flow if the low-viscosity lubricant streams 
are able to bring about "perfect slip" at the walls. 
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which are coated with a low-viscosity lubricant. The plates are then squeezed 
together. The relationship between applied load and rate of squeezing is interpreted 
in terms of the biaxial extensional viscosity q,,. Again, data interpretation is 
difficult and the technique itself is not easy to use. 

5.4.6 Contraction flows 
The contraction-flow method of determining extensional properties can be ap- 

plied equally well to polymer melts and to more mobile systems like dilute polymer 
solutions. Indeed, in the case of polymer melts, the so-called Bagley (1957) correc- 
tion (or a suitable variant of it) must be used to interpret correctly shear viscosity 
data from a capillary rheometer (cf. 52.4.9). The Bagley correction can be im- 
mediately utilized to yield extensional-viscosity information on the melt, as we shall 
see. Specifically, in capillary rheometry where the test fluid is forced to flow under 
pressure from a barrel into a capillary of much smaller radius, one technique is to 
measure the pressure in the barrel for fixed capillary diameter D and varying length 
L (cf. Chapter 2 and Fig. 5.9). At a fixed flow rate, a plot of pressure as a function 
of L/D provides sufficient information to facilitate shear-viscosity determination: 
in particular, the pressure drop for fully developed Poiseuille flow along a capillary 
of a given length can be determined. 

Often, just two experiments are carried out in capillary rheometry: one for a 
capillary of a reasonable length (L/D 2 20) and the other for so-called orifice flow 
(i.e. L = 0). It is this last experiment (and by implication the Bagley correction) 
which is of potential importance in the determination of extensional-viscosity 
characteristics. 

In general, a contraction geometry is simply two capillaries of different diameters 
with an abrupt contraction between them. In some experiments, as we have 
indicated, flow through an orifice is an alternative. 

Usually, but not always, the flow consists of a central core and a vortex region 
(see Fig. 5.10). The kinematics are determined by the flow rate and the shape of the 
central core region, whilst the relevant stress is obtained from the pressure drop 
required to force the test fluid through the contraction. There is no doubt that the 

0 L / D  

Fig. 5.9 The Bagley correction. The pressure drop (for a fixed flow rate and fixed capillary diameter) is 
measured for various values of capillary length. 
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Fig. 5.10 Contraction flow. In the case of highly elastic liquids, vortex enhancement usually occurs. 

contraction-flow experiment is relatively easy to perform and has many attractive 
features. 

An approximate analysis of the contraction-flow problem has been developed by 
Binding (1988). This extends and reinterprets the early analysis of Cogswell (1972(a) 
and (b)). The Binding analysis is based on the assumption that the flow field is the 
one of least resistance; it includes both shear and extension in its formulation. The 
theory successfully predicts the phenomenon of vortex enhancement, which is often 
observed in axisyrnmetric contraction flows, and provides estimates of the exten- 
sional viscosity. 

5.4.7 Open-syphon method 
The open-syphon technique is shown schematically in Fig. 5.11. Fluid from the 

reservoir is drawn up through a nozzle by a vacuum pump and the nozzle is then 
raised above the level of the liquid in the reservoir. With some liquids the upward 
flow continues. This is the open-syphon effect. The flow rate and the dimensions of 
the fluid column yield the relevant kinematical information and the stress is 
provided by force measurements made at the top of the liquid column (see, for 
example, Astarita and Nicodemo 1970, Moan and Magueur 1988). 

In general terms, the open-syphon technique suffers from the same general 
disadvantages as the spinning experiment, so far as data interpretation is concerned. 
However, the former may have advantages in the case of structured materials like 
gels. In the spinning experiment the structure is often changed by shear in the 
delivery pipe. In contrast, the test material in the open-syphon technique is in its 
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Fig. 5.11 The open-syphon technique for studying extensional flow. Liquid is sucked up from the 
reservoir into a tube, and the downward pull on the tube is measured. 

rest state before being exposed to a sudden extension and one is therefore deterrnin- 
ing what is essentially a measure of the extensional properties of the virgin gel. 

5.4.8 Other techniques 
Numerous other techniques have been suggested for the study of the extensional 

behaviour of mobile elastic liquids. These include the so-called triple-jet technique 
(Oliver and Bragg 1974), the droplet techniques of Schiimmer and Tebel(1983) and 
Jones and Rees (1982), the elongation of radial filaments on a rotating drum (Jones 
et al. 1986) and stagnation-point devices such as the opposing-jet techniques of 
Odell et al. (1985), Keller and Odell (1985) and Fuller et al. (1987). 

5.5 Experimental results 

Typical transient extensional-viscosity data for a polymer melt are given in Fig. 
5.12 (cf. Meissner 1985, Bird et al. 1987(a)). It will be seen that as the strain rate i is 
increased, the experimental results depart from "Trouton behaviour" *, increasing 
abruptly with time. This is called "strain hardening". There then follows the 
maximum in ?jE(t, i) already referred to in 55.4.1. In view of the extreme difficulty 

* Trouton behaviour, in this context, is obtained from linear viscoelasticity theory. 
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Fig. 5.12 Extensional viscosity growth &(r, 2 )  as a function of time t for a low-density polyethylene 
melt. 423 K (see, for example, Meissner 1985). 

of obtaining data at relatively high strains, rheologists nowadays often simply quote 
the maximum values of t E ( t ,  i) (which were, of course, once thought to be the 
equilibrium values vE(i)). When this is done, one obtains the type of.result shown 
in Fig. 5.13 for four polymer melts. The data are consistent with the requirements of 
eqs. (5.8) and (5.15). There is a clear indication of a maximum in vE with strain rate 
for the polyethylenes. 

If the extensional viscosity and shear viscosity are plotted as functions of stress, 
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Fig. 5.13 Extensional viscosity data for four polymer melts (after Laun and Schuch 1989). 
LDPE-low-density polyethylene; HDPE-high-density polyethylene; PS-polystyrene. 
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Fig. 5.14 Extensional viscosity and shear viscosity as functions of stress for the low-density polyethelyne 
designated IUPAC A. 423 K (cf. Fig. 5.12) (see, For example, Laun and Schuch 1989). 

rather than strain rate, the response shown in Fig. 5.14 is obtained for a typical 
low-density polyethylene melt. 

In Fig. 5.15 we show extensional-viscosity data obtained from a spin-line 
rheometer on a solution of polybutadiene in dekalin (Hudson and Ferguson 1976). 
Here there is a further and substantial increase in q ,  after the tension-thinning 
region. The data in Figs. 5.13 and 5.14 do not extend to sufficiently high values of i 
to indicate whether the ultimate tension-thickening trend occurs also for stiff 
polymeric systems. 

We have already indicated that the accurate determination of qE for mobile 
elastic liquids is very difficult, perhaps impossible, but the evidence to hand 
indicates that the extensional viscosities which have been measured can be very high 
indeed. For example, in Figs. 5.16 and 5.17 we show shear- and extensional-viscosity 

Strain r a t e .  i /s-1 

Fig. 5.15 Extensional viscosity curve determined with a commercial spin-line rheometer for a 6.44% 
solution of polybutadiene in dekalin (cf. Hudson and Ferguson 1976). 
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Fig. 5.16 Viscometric data for aqueous solutions of polyacrylamide (1175 grade) (Walters and Jones 
1988). Note that viscosity decreases and normal stress increases with shear rate. 

10" 10 O 10' lo2 
Strain rote. E / s - '  

Fig. 5.17 Extensional viscosity data obtained from a spin-line rheometer for the aqueous polyacrylamide 
solutions of Fig. 5.16 (Walters and Jones 1988). Note that whereas shear viscosity decreased with shear 
rate, extensional viscosity increases with extensional rate. 
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Fig. 5.18 Viscometric data for a 2% aqueous solution of polyacrylamide (El0 grade) and a 3% aqueous 
solution of Xanthan gum. Note the very different values of N, for solutions with almost the same 
viscosities. 
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Fig. 5.19 (a) Extensional viscosity data obtained from a spin-line rheometer for the polymer solutions 
investigated in shear flow in Fig. 5.18; (b) Trouton ratios obtained from Figs. 5.18 and 5.19(a). Note that 
although the Xanthan gum solution is tension-thinning (Fig. 5.19(a)), the associated Trouton ratios 
increase with strain rate and are still significantly in excess of the inelastic value of 3. 
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data for a series of very dilute aqueous solutions of a very high molecular-weight 
polyacrylamide designated 1175 (Walters and Jones 1988). It is not difficult to 
deduce that the Trouton ratios are as high as lo4. 

We now refer to the rheometrical behaviour of two polymer solutions with almost 
identical shear viscosity behaviour (see Figs. 5.18 and 5.19). One is a 2% aqueous 
solution of polyacrylarnide (El0 grade) and the other a 3% aqueous solution of 
Xanthan gum. We note that polyacrylamide is a more flexible polymer than 
Xanthan gum which is rod-like. The corresponding extensional-viscosity data ob- 
tained from a spin-line rheometer show that the polyacrylamide solution is strongly 
tension-thickening, whereas the Xanthan gum solution is tension-thinning over the 

Fig. 5.20 An illustration of the open-syphon effect for a 0.75% aqueous solution of polyethylene oxide. 
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range studied. However, when the Trouton ratios are calculated on the basis of eqn. 
(5.12), we see that even the Xanthan gum solution has TR values that are signifi- 
cantly higher than the Newtonian value of 3 over most of the range. 

Finally, we note that available evidence would indicate that the Trouton ratios 
for non-polymeric colloidal liquids are much lower than those for polymeric liquids 
showing similar behaviour in small-amplitude oscillatory-shear flow. 

5.6 Some demonstrations of high extensional viscosity behaviour 

We conclude this chapter by referring to some easily reproduced situations in 
which the dramatic effects of high Trouton ratios are clearly in evidence. Some of 
these can be readily performed in the laboratory with quite standard equipment. 

We have already referred to the open-syphon technique for measuring exten- 
sional viscosity (cf. 55.4.7). We remark that the use of a 0.75% aqueous solution of 
polyethylene oxide WSR 301 grade (or similar polymer solution) will enable the 
experimenter to operate a conventional syphon several centimetres above the level 
of the reservoir liquid. 

The open-syphon effect is even more dramatically demonstrated when the 
polymer solution is transferred from one full container to a lower empty container. 
All that is normally required to (almost) empty the container is to start the flow by 
slightly tilting the top container. The initial flow will be sufficient to empty the bulk 
of the liquid from the top container (see Fig. 5.20). The open-syphon phenomena 
can be directly attributed to the very high Trouton ratios exhibited by the polymer 
solution. These and other dramatic demonstrations of high extensional-viscosity 
behaviour are illustrated in the film "Non-Newtonian Fluids" produced by Walters 
and Broadbent (1980) *. 

Our final example of visual extensional-viscosity phenomena is provided by flow 
past cylindrical obstructions placed asymmetrically in a parallel channel (cf. Walters 
and Jones 1988). The flow is basically two-dimensional and may be considered to be 
made up of narrow channels and wide channels formed by the offset positioning of 
the circular-cylinder barriers (Fig. 5.21). 

The behaviour of the Newtonian liquid is unspectacular with as much liquid 
going through the narrow channels as one would expect. This behaviour may be 
contrasted with that for the relatively inelastic Xanthan gum solution. In this case, a 
substantial flow finds its way through the narrow channels, clearly on account of the 
shear-thinning viscosity. 

Finally, we note the qualitative difference in the behaviour of the highly elastic 
shear-thinning polyacrylamide solution. In this case, extensional viscosity consider- 

* The film is available in Video or 35mm form from the Department of Mathematics, University College 
of Wales, Aberystwyth, UK. 



96 Extensional viscosity [Chap. 5 

Fig. 5.21 Flow visualization pictures for: (a) a Newtonian liquid; (b) a Xanthan gum solution; (c)  a 
polyacrylamide solution. They show the dominant effects of shear-thinning in the Xanthan gum solution 
and tension-thickening in the polyacrylamide solution (see, for example, Walters and Jones 1988). 

ations are all important and virtually no liquid finds it way into the narrow 
channels. There is a relatively fast-moving stream in the wide channels and virtually 
stagnant regions elsewhere (cf. the four-roll mill situation in Fig. 5.3). 







































CHAPTER 7 

RHEOLOGY OF SUSPENSIONS 

7.1 Introduction 

The rheology of suspensions has been the subject of serious research for many 
years, mainly because of its obvious importance in a wide range of industrial 
applications (see, for example, Barnes 1981). Suspensions include cement, paint, 
printing inks, coal slurries, drilling muds and many proprietory products like 
medicines, liquid abrasive cleaners and foodstuffs. Examples of suspensions where 
the particles are deformable range from emulsions to blood. 

7.1.1 The general form of the viscosity curve for suspensions 
The general viscosity/shear rate curve for all suspensions is shown schematically 

in Fig. 7.1. We could anticipate most of this behaviour from the general discussion 
of Chapter 2. The first Newtonian plateau at low shear rate is followed by the 
power-law shear-thinning region and then by a flattening-out to the upper (second) 
Newtonian plateau. At some point, usually in this upper Newtonian region, there 
can be an increase in viscosity for suspensions of solid particles, given the ap- 
propriate conditions. In certain situations the first Newtonian plateau is sometimes 
so high as to be inaccessible to measurement. In such cases the low-shear rate 
behaviour is often described by an apparent yield stress. 

The factors controlling the details of the general flow curve in particular cases 
will now be considered. One point worth stressing here is that the relevant measure 
of the amount of material suspended in the liquid is that fraction of space of the 

Log shear rote 

Fig. 7.1 Schematic representation of the flow curve of a concentrated suspension. 
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total suspension that is occupied by the suspended material. We call this the phase 
volume $I. This is the volume-per-volume fraction, and not the weight-per-weight 
fraction that is often used in defining concentration. The reason why phase volume 
is so important is that the rheology depends to a great extent on the hydrodynamic 
forces which act on the surface of particles or aggregates of particles, generally 
irrespective of the particle density. 

7.1.2 Summary of the forces acting on particles suspended in a liquid 
Three kinds of forces coexist to various degrees in flowing suspensions. First, 

there are those of colloidal origin that arise from interactions between the particles. 
These are controlled by properties of the fluid such as polarisability, but not by 
viscosity. These forces can result in an overall repulsion or attraction between the 
particles. The former can arise, for instance, from like electrostatic charges or from 
entropic repulsion of polymeric or surfactant material present on the particle 
surfaces. The latter can arise from the ever-present London-van der Waals attrac- 
tion between the particles, or from electrostatic attraction between unlike charges on 
different parts of the particle (e.g. edge/face attraction between clay particles). If 
the net result of all the forces is an attraction, the particles flocculate, whilst overall 
repulsion means that they remain separate (i.e. dispersed or deflocculated). 

Each colloidal force has a different rate of decrease from the surface of the 
particle and the estimation of the overall result of the combination of a number of 
these forces operating together can be quite complicated. Figure 7.2 shows the form 
of some single and combined forces (see Hunter 1987 for a more detailed account of 
colloidal forces). 

Secondly, we must consider the ever-present Brownian (thermal) randomising 
force. For particles of all shapes, this constant randomisation influences the form of 
the radial distribution function (i.e. the spatial arrangement of particles as seen from 
the centre of any one particle), whereas for non-spherical particles, spatial orienta- 
tion is also being randomised. The Brownian force is of course strongly size-depen- 
dent, so that below a particle size of 1 pm it has a big influence. This force ensures 
that the particles are in constant movement and any description of the spatial 
distribution of the particles is a time average. 

Thirdly, we must take into account the viscous forces acting on the particles. The 
viscous forces are proportional to the local velocity difference between the particle 
and the surrounding fluid. Hence the way these affect the suspension viscosity 
enters via the viscosity of the continuous phase which then scales all such interac- 
tions. Thus an important parameter is the 'relative viscosity' q , ,  defined as the 
suspension viscosity divided by the continuous-phase viscosity. 

Clearly, the rheology measured macroscopically is strongly dependent on these 
microstructural considerations. For instance, the presence of isolated particles 
means deviation of the fluid flow lines and hence an increased viscosity. At higher 
concentrations, more resistance arises because particles have to move out of each 
other's way. When particles form flocculated structures, even more resistance is 
encountered because the flocs, by enclosing and thus immobilising some of the 
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Fig. 7.2 Examples of the typical interaction Forces between a pair of sub-micron particles: (a) van der 
Waals attraction (omnipresent); (b) Steric repulsion due to adsorbed macromolecules; (c) Electrostatic 
repulsion due to the presence of like charges on the particles and a dielectric medium; (d) A combination 
of (a) and (b); (e) A combination of (a) and (c); (f) A combination of (a), (b) and (c). 

continuous phase, have the effect of increasing the apparent phase volume, thus 
again giving a higher than expected viscosity. 

7.1.3 Rest structures 
When particles are introduced into a liquid at rest they usually assume a state of 

thermodynamic equilibrium which, when the Brownian motion dominates, corre- 
sponds to a random disordered state. 

When colloidal forces dominate, the particles form structures whose forms 
depend on whether the overall forces are attractive or repulsive. When they are 
attractive they form aggregates and when they are repulsive they form a 
pseudo-lattice. 

The particular shape of aggregates can vary from near-spherical flocs to strings. 
The latter is sometimes referred to as a string-of-pearls structure. Pigment disper- 
sions form flocs and silica dispersions can form the string structures. 

Pseudo-lattices are formed by overall repulsion, for instance in systems of 
particles carrying electrostatic charges of the same sign dispersed in a polar 
continuous phase. The particles then take up positions as far from each other as 
possible. If the charge on such particles is very large, movement of the particles is 
severely restricted and the structure can be visualised as a pseudo-crystal: if the 
lattice spacing is comparable to optical wavelengths, interference effects occur and 
the suspension displays irridescence. 
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Any of the structures mentioned above can be modified by the adsorbtion of 
surfactant materials onto the surface of the particles. The structures formed by 
electrostatic charges can be modified by the addition of electrolytes. 

The structures discussed so far are formed by near-spherical particles. However, 
if the basic particle is itself anisotropic, very complicated structures can be formed. 
One example is an aqueous suspension of bentonite clay: the basic particle is 
plate-like and it carries charges of opposite sign on the faces and edges. The 
aggregated structure is then like a house of cards with edges attracted to faces. 
Another example is a suspension of soap crystals. Soap can be made to crystallize in 
the form of long ribbons, which then intertwine to form an entangled structure, as 
in lubricating grease. 

A useful method for judging the importance of colloidal forces has been derived 
by Woodcock (1985). It gives the average distance h between first neighbours in 
terms of the particle size d and the volume fraction + as follows: 

This expression is plotted in Fig. 7.3 for four sizes of particle. The diagram also 
shows the range of action of typical colloidal forces. This diagram indicates for 
example that, for a suspension with a @ of 0.2 and particle size 0.05 pm, electro- 
static interactions will be very important. This will not be so if particles are larger or 
if the concentration is lower. 

," 
0.1 0.2 0.3 0.L 0.5 0.6 0.7 

Solids volume fraction 

Fig. 7.3 Average interparticle separation as a function of concentration for monodisperse spheres 
(according to eqn. (7.1)) plotted for four particle sizes. The horizontal lines show twice the distance over 
which various interparticle forces typically operate: (A) Electrostatic forces in aqueous suspensions with 
low salt levels; (B) Steric forces originating from adsorbed macromolecules; (C) Steric forces originating 
from adsorbed nonionic detergents. 
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7.1.4 Flow-induced structures 
We shall consider first, relatively unaggregated systems in which the Brownian 

forces dominate. When a concentrated suspension of this type flows at very low 
shear rates, the particles necessarily have to move around each other or "bounce 
off' each other for overall flow to occur. This involves a large resistance and the 
resulting viscosity is hlgh. On the other hand, the distribution of particles remains 
essentially undisturbed because the effect of Brownian motion dominates the shear 
motion and restores the randomness of the rest-state distribution. The viscosity 
remains essentially constant. At slightly higher shear rates, the imposed velocity 
gradient induces an orientation of the particle structure, which is not restored by the 
Brownian motion. However this orientation enables particles to move past each 
other more freely than at very low shear rates and hence the viscosity is lower. At 
even higher shear rates, the structure is so grossly orientated that the particles form 
layers separated by clear layers of the continuous phase. The viscosity is then at its 
minimum value. The suspension is shear-thinning. The existence of particle layers 
has been confirmed by light diffraction. When shearing is stopped the flow-induced 
layered structure gradually disappears. 

If the shear stress is increased above a critical value, the layers disrupt and 
gradually disappear. Hence, the viscosity begins to rise again and it also increases 
with time of shearing. 

Flow-induced structures can also be formed by the more complicated clay and 
soap suspensions mentioned earlier. In these cases, flow causes the plates and 
ribbons to align in the direction of flow. This orientation can be detected by optical 
techniques. 

Examples of increased flocculation caused by flow are also known (see, for 
example, Cheng 1973). 

7.2 The viscosity of suspensions of solid particles in Newtonian liquids 

7.2.1 Dilute dispersed suspensions 
A considerable amount of progress has been made in predicting the viscosity of 

dilute suspensions (10% and less phase volume). All studies essentially extend the 
work of Einstein (1906, 1911) on spheres, so that particle shape, charge and the 
small amount of hydrodynamic interaction arising when any one particle comes into 
the vicinity of another can all be taken into account. 

Einstein showed that single particles increased the viscosity of a liquid as a 
simple function of their phase volume, according to the formula 

where q is the viscosity of the suspension and q, is the viscosity of the suspending 
medium. 

We notice immediately that in eqn. (7.2) there is no effect of particle size, nor of 
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particle position, because the theory neglects the effects of other particles. When 
interactions between particles are included, the situation becomes more com- 
plicated. The presence of other particles is accounted for by higher-order terms in +. 
However the only tractable theory is for extensional flow, because only in this type 
of flow can the relative position of the particles be accounted for analytically. 
Batchelor (1977) gives the viscosity in this case as 

where the viscosities must now to be interpreted as extensional viscosities (Chapter 
5). 

A number of experimental determinations of the term multiplying +2 for shear 
flows have been made, but the range of values so obtained is large (varying from 
about 5 to 15). 

A great deal of work has been done and many reviews written (see, for example, 
Barnes 1981) on dilute suspensions, but almost all conclude that, apart from 
providing some limiting condition for the concentrated case, the work is of little 
relevance to suspensions of industrial importance. Dilute suspension theory covers 
the range below 10% phase volume, and this accounts for no more than a 40% 
increase in viscosity over the continuous phase. 

7.2.2 Maximum packing fraction 
The influence of particle concentration on the viscosity of the concentrated 

suspensions is best determined in relation to the maximum packing fraction. There 
must come a time, as more and more particles are added, when suspensions "jam 
up", giving continuous three-dimensional contact throughout the suspension, thus 
making flow impossible, i.e. the viscosity tends to infinity. The particular phase 
volume at which this happens is called the maximum packing fraction +,, and its 
value will depend on the arrangement of the particles. Examples are given in Table 
7.1. Maximum packing fractions thus range from approximately 0.5 to 0.75 even for 
monodisperse spheres. 

The maximum packing fraction, as well as being controlled by the type of 
packing, is very sensitive to particle-size distribution and particle shape (see, for 

TABLE 7.1 
The maximum packing fraction of various arrangements of monodisperse spheres 

Arrangement Maximum packing fraction 

Simple cubic 0.52 
Minimum thermodynamically stable configuration 0.548 
Hexagonally packed sheets just touching 0.605 
Random close packing 0.637 
Body-centred cubic packing 
Face-centred cubic/ hexagonal close packed 



7.21 Solid particles in Newtonian liquids 121 

example, Wakeman 1975). Broader particle-size distributions have higher values of 
+, because the smaller particles fit into the gaps between the bigger ones. On the 
other hand, nonspherical particles lead to poorer space-filling and hence lower +,. 
Particle flocculation can also lead to a low maximum packing fraction because, in 
general, the flocs themselves are not close-packed. 

From the above considerations, we see that the ratio +/+, is a relevant 
normalized concentration. 

7.2.3 Concentrated Newtonian suspensions 
The situation for concentrated suspensions, where we expect higher-order terms 

than +2 to be important, is even more difficult to analyse from a theoretical point of 
view. The only methods available to tackle the problem are to introduce a technique 
for averaging the influence of neighbouring particles or alternatively to simulate the 
situation using computer modelling. 

One recent development, based on an averaging technique, is that of Ball and 
Richmond (1980) who essentially start from the assumption that the effect of all the 
particles in a concentrated suspension is the sum of the effects of particles added 
sequentially. Hence the Einstein equation can be written in a differential form 

where dq is the increment of viscosity on the addition of a small increment of phase 
volume d+ to a suspension of viscosity q. The viscosity of the final suspension is 
then obtained by integrating the phase volume between 0 and +, for which the 
viscosity is q ,  and q, respectively. Then 

Ball and Richmond point out that this omits the correlations between spheres 
due to their finite size. This means that when a particle is added to a relatively 
concentrated suspension it requires more space than its volume d+, due to packing 
difficulties. Therefore d+ has to be replaced by d+/(l - KG), where K accounts for 
the so-called "crowding" effect. Integration now yields 

From this equation we see that the viscosity becomes infinite when + = 1/K. 
Therefore, we can identify 1/K with the maximum packing fraction +,. Ball and 
Richmond's expression is effectively identical to that of Krieger and Dougherty 
(1959). Krieger and Dougherty's theory also states that, in the general case, the 5/2 
factor could be replaced by the intrinsic viscosity [q]. * The value of 5/2 is the 

* Note: in suspension rheology [ q ]  is dimensionless, since the phase volume is also dimensionless (see 
eqn. (7.2)); whereas in polymer rheology the concentration is usually expressed as a mass per unit 
volume, thereby giving [ q ]  the dimensions of a reciprocal concentration (see 5 6.5). 
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Fig. 7.4 Effect of binary particle-size fraction on suspension viscosity, with total % phase volume as 
parameter. The particle-size ratio is 5 : 1. P -, Q illustrates the fiftyfold reduction in viscosity when a 60% 
v/v suspension is changed from a mono- to a bimodal (50/50) mixture. P -* S illustrates the 15% 
increase in phase volume possible for the same viscosity when a suspension is changed from mono- to 
bimodal. 

intrinsic viscosity for an ideal dilute suspension of spherical particles. Replacing it 
by [q] allows particles of any shape to be accounted for. 

The Krieger-Dougherty equation is 

Equations 7.6 and 7.7 both reduce to the Einstein equation (eqn. (7.2)) when + is 
small. 

The values of +, obtained from the empirical use of eqn. (7.7) are strongly 
dependent on the particle-size distribution. Thus, +, increases with increasing 
polydispersity (i.e. the spread of sizes). This is illustrated by Fig. 7.4 where the 
viscosities of mixtures of large and small particles are plotted as a function of the 
total phase volume. The large reduction in viscosity seen near a fraction of 0.6 of 
large particles is known as the Farris effect. The effect is very large at a total phase 
volume of more than 50%. Mixing particle sizes thus allows the viscosity to be 
reduced whilst maintaining the same phase volume, or alternatively, the phase 
volume to be increased whilst maintaining the same viscosity. Similar effects can 
also be shown for tertiary mixtures (cf. Fig. 7.5). In the example shown in Fig. 7.5 
the minimum relative viscosity is approximately 25 for the optimum tertiary mixture 
and is over 30 for the binary mixture. All these effects can be predicted using eqn. 
(7.7) by assuming, for instance, that the small particles thicken the continuous phase 
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Fig. 7.5 Effect of particle-size distribution on trimodal suspension viscosity. Contours show values of the 
relative viscosity at 65% total solids (from the theoretical relationship of Farris (1968). 

and the next-size-up particles then thicken this phase; the result for a binary 
mixture being 

Most suspensions of industrial interest have a continuous distribution of particle 
sizes which often fit some empirical mathematical expression. However no informa- 
tion is available in the rheological literature on how the parameters of such a fit 
control cpm. Each system has therefore to be measured and +, found by nonlinear 
curve fitting. Once +, is found for any practical suspension, it is a useful parameter 
to assess the effect on viscosity of changing the dispersed phase concentration or the 
continuous phase viscosity. 

Thus far, we have concentrated on the effect of spherical particles on the 
viscosity of suspensions. However, particle asymmetry has a strong effect on the 
intrinsic viscosity and maximum packing fraction, and hence on the 
concentration/viscosity relationship. A number of studies have shown that any 
deviation from spherical particles means an increase in viscosity for the same phase 
volume. Figures 7.6 and 7.7 illustrate this point. It will also be seen that, generally 
speaking, rods have a greater effect than discs in increasing the viscosity. This is in 
accordance with theory, at least as far as it goes for dilute suspensions. Barnes 
(1981) provides simple empiricisms for the effect of very large axial ratio on the 
intrinsic viscosity [ T J ] .  These are 

discs: [ T J ]  = 3 (axial ratio)/lO, (7.8a) 

rods: [ T J ]  = 7 [(axial ra t i~)"~]  ,400. (7.8b) 
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Percentoge volume concentration 

Fig. 7.6 Dependence of the viscosity of differently shaped particles in water on concentration at a shear 
rate of 300s-' (from Clarke 1967). (m) spheres; (0) grains; (0) plates; ( 0 )  rods. (See Table 7.2.) 
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Fig. 7.7 Dependence of the relative viscosity of glass fibre suspensions of various length/diameter ratios 
(L/D) (cf. Giesekus 1983). (AAA) spheres; (0 0 0 )  L/D = 7; (vvv) L/D = 14; (Om) L/D = 21 (see 
Table 7.2). 

Table 7.2 gives the values of [ T J ]  and @,,, obtained by fitting the results of a 
number of experimental investigations on suspensions of asymmetric particles using 
eqn. (7.7). The trend to higher [ T J ]  and lower @,,, with increasing asymmetry is clearly 
seen, but the product of the two terms changes little. This fact has practical value in 
making estimates of the viscosity of a wide variety of suspensions. The values of [ T J ]  
are qualitatively in line with the predictions of eqns. (7.8a) and (7.8b). 
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TABLE 7.2 
The values of [q] and @m for a number of suspensions of asymmetric particles, obtained by fitting 
experimental data to eqn. (7.7) 

~p 

System [Ill @m [ l ~ l @ ~  Reference 

Spheres (submicron) 2.7 0.71 1.92 de Kruif et al. (1985) 
Spheres (40 pm) 3.28 0.61 2.00 Giesekus (1983) 
Ground gypsum 3.25 0.69 2.24 Turian and Yuan (1977) 
Titanium dioxide 
Laterite 
Glass rods 

(30 x 700 pm) 
Glass plates 

(100 X 400 pm) 
Quartz grains 

(53-76 pm) 
Glass fibres: 

axial ratio-7 
axial ratio-14 
axial ratio-21 

Turian and Yuan (1977) 
Turian and Yuan (1977) 
Clarke (1967) 

Clarke (1967) 

Clarke (1967) 

Giesekus (1983) 
Giesekus (1983) 
Giesekus (1983) 

7.2.4 Concentrated shear-thinning suspensions 
Although the theory described above (see eqn. (7.6)) was derived for the spheri- 

cally symmetrical radial distribution function, i.e. the very low shear rate case, it has 
been found to work surprisingly well over a range of shear rates for which the 
structure is anistropic. It accommodates these situations by allowing [ q ]  and +, to 
vary with shear rate, thus accounting for shear-thinning by the fact that the flow 
brings about a more favourable arrangement of particles. The tendency to form 
two-dimensional structures rather than three is one such favourable rearrangement. 

Considering first the viscosity/phase volume relationships at very low and very 
high shear rates, it is found that they both fit the Krieger-Dougherty equation. 

Phase volume. @ 

Fig. 7.8 Relative viscosity versus phase volume for monodisperse latices. Data points are those of Krieger 
(1972) and de Kruif et al. (1985) combined. The upper line relates to the zero shear-rate asymptotic 
relative viscosity, and is the best fit to the Krieger-Dougherty eq. (7.7) with = 0.632 and [q] = 3.133. 
The lower line relates to the high shear-rate asymptotic value of relative viscosity and is the best fit to 
eqn. (7.7), with @,,, = 0.708 and [ q ]  = 2.710. 
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Combining data from Krieger (1972) and de Kruif et al. (1985) (Fig. 7.8) the values 
of +, and [ q ]  pertinent to the two situations are 

Secondly, a number of workers have found that not only can viscosity be related 
to phase volume at the extremes of shear rate, but at intermediate values as well. 
However, it is usually necessary in this case to correlate values of viscosity measured 
at the same shear stress, not shear rate. 

A further reduction of data is possible following the suggestion of Krieger (1972). 
He recognised that although +, and [q] are stress-dependent, they are independent 
of particle size. In order to relate the viscosity of different particle-size suspensions, 
he suggested that, instead of shear rate, a new variable be used, namely 

where a is the particle radius, a the shear stress and kT the usual unit of thermal 
energy. 

Krieger was able to show that for noninteracting suspensions, the viscosity/shear 
stress curves for sub-micron suspensions are reducible to a single curve (Fig. 7.9) 
whatever the particle size, temperature and continuous phase viscosity. The "Krieger 
variable" is dimensionless and is in fact a modified PCclet number *. Krieger 
realised that the viscosity of the suspension is more relevant than that of the 
continuous phase in accounting for concentrated suspensions. The shape of the 
curve of viscosity versus P, in most cases follows the empirical Ellis model: 

where b and p are dimensionless quantities (see 52.3.2 and the footnote on p. 18). 
26 
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Fig. 7.9 Composite curve of relative viscosity versus modified PCclet number (see eqn. (7.9)). Points are 
for 0.1-0.5 pm latex particles dispersed in two solvents; the solid line is for the same-sized particles 
dispersed in water; the volume fraction is 0.50 (reproduced from Krieger 1972). 

* The PCclet number is the ratio of the viscous force experienced by a particle to the Brownian force. 
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7.2.5 Practical consequences of the effect of phase volume 

Z Weighing errors 
An examination of eqn. (7.7) will show that, at phase volumes less than about 

30% concentration, the viscosity changes slowly with concentration, and the viscosi- 
ties at very low and very high shear rates, respectively, are essentially the same, i.e. 
dilute suspensions are basically Newtonian. However, at values of cp around 0.5, 
small changes in either @ or cp, give large changes in viscosity and alter the degree 
of shear-thinning. Thus, small errors in the weighing involved in the incorporation 
of the particles making up the suspension can give very large variations in viscosity, 
(see, for example, Fig. 7.10). Also, as is often the case in polymer latices after their 
manufacture, the absorption of small amounts of the suspending phase into the 
suspended phase can cause large changes in the viscosity of concentrated suspen- 
sions. Even half of one percent lost from the continuous phase to the suspended 
phase means an increase in the phase volume of one percent, which can, in the case 
of high phase volume, lead to a doubling or more of the viscosity! When it is 
realised that this is equivalent to the particle size increasing by about 0.2%, and that 
particle size measurement techniques are nowhere near able to detect such small 
changes, we see that viscosity is a very sensitive variable in concentrated suspen- 
sions. 

N Effect of phase separation 
Any sedimentation or 'creaming' of the particles in a viscometer will result in an 

increase in the indicated viscosity. At phase volumes above about 0.5 thls effect is 
extremely pronounced. 

IZI Wall effect 
Yet another factor which must be taken into account in rheometry, as well as in 

industrial situations, is known as the "wall effect". This term covers the phenomena 

w 
lo;O 50 60 

Percentage phase volume 

Fig. 7.10 Relative viscosity versus nominal phase volume showing the effect of a 1% error in phase 
volume. 
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which lead to a reduction in concentration of a suspension adjacent to the solid wall 
of the flow channel. One such phenomenon arises from the geometric impossibility 
of arranging particles near a wall in the same way as they are arranged in the bulk. 
Another is a particle migration from regions of high shear rBte to regions of low 
shear rate. The hydrodynamic redistribution of particles demonstrated by SegrC and 
Silberberg (1962) is yet another. 

A number of approaches have been attempted to account for the wall depletion. 
Most use the concept of a layer of continuous phase only at the wall and the normal 
dispersion everywhere else, with the thickness of the depleted layer being of the 
order of the radius of the particles. 

The result of the wall effect in tube viscometers is a reduction in the measured 
viscosity, the reduction increasing as the tube radius is decreased. Figure 7.11 
illustrates these effects for lubricating greases. 

7.2.6 Shear-thickening of concentrated suspensions 
Given the correct conditions, all concentrated suspensions of non-aggregating 

solid particles will show shear-thickening. The particular circumstances and severity 
of shear-thickening will depend on the phase volume, the particle-size distribution 
and the continuous phase viscosity. The region of shear-thickening usually follows 
that of the shear-thinning brought about by two-dimensional layering. The layered 
arrangement is unstable, and is disrupted above a critical shear stress. The ensuing 
random arrangement increases the viscosity. The effect has been studied using an 
optical diffraction system (Hoffman 1972). The result in terms of viscosity/shear 
rate for a range of particle concentrations is shown in Fig. 7.12. 

A number of studies have shown that the critical shear rate for transition to 
shear-thickening varies little with phase volume when the phase volume is near 0.50. 
However, at phase volumes much higher than this, the critical shear rate decreases, 
whilst at phase volumes significantly below 0.5, the opposite is true (see Fig. 7.13). 
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Fig. 7.11 (a) and (b): Viscosity measurements for greases measured in axial flow between parallel 
cylinders (plunger viscometer) using various annular gaps. Gap/mm: ( I )  0.624; (2)  0.199; ( 3 )  0.042. The 
viscometer-size effect disappears at higher shear rates away from the "yield stress" region. (Bramhall & 
Hutton 1960). 
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Log shear rate 

Fig. 7.12 Schematic representation of viscosity versus shear rate for shear-thickening systems, with phase 
volume as parameter (cf. Barnes, 1989). 

Percentage phase volume 
Fig. 7.13 Schematic representation of the dependence of the critical shear rate for the onset of 
shear-thickening qc, as a function of the phase volume of the dispersed phase $I. 
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Fig. 7.14 The power-law index n for the shear-thickening region of starch suspensions (after Griskey and 
Green 1971). 
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Fig. 7.15 Shear rate for the onset of shear-thickening j.,, versus particle size for suspensions with phase 
volumes around 0.5 (Barnes, 1989). 

The level and slope of the viscosity/shear rate curve above the transition 
increases with increase in particle concentration (see Figs. 7.12 and 7.14). Evidence 
is accumulating that the viscosity decreases again at very high shear rates, although 
experiments are difficult to carry out at very high phase volume due to flow 
instability. The ultimate decrease is readily observed at lower phase volume. 

For any phase volume around 0.50, it is found that the effect of particle size on 
the value of the critical shear rate is quite large. In fact, it is approximately 
proportional to the inverse of the square of the particle size (see Fig. 7.15). The 
viscosity of the continuous phase is also very important, and an increase in this 
viscosity decreases the critical shear rate. This reflects the greater relevance of shear 
stress (rather than shear rate) for the onset of shear-thickening, (see Fig. 7.16). 

Continuous phase viscosity x shear rate.  qS . i /Po 
Fig. 7.16 Envelope of flow curves for latices dispersed in various solvents whose viscosities vary from 18 
mPa.s to 14 Pas. (Redrawn from Hoffman 1972.) 
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Fig. 7.17 (a) Viscosity of clays A and B at different ratios as a function of shear rate at a solids content of 
44% by volume (67% by weight). Clay A 9 pm, clay B 0.7 pm. (Alince and Lepoutre 1983); (b) Viscosity 
of calcium carbonate blends at 48% solids content by volume (71.4% by weight) as a function of shear 
rate. Clay A 12 am, clay B 0.65 pm. (Alince and Lepoutre 1983); (c) Effect of particle-size distribution. 
(Redrawn from Williams et al. 1979). 

The severity of shear-thickening is often alleviated by widening the particle-size 
distribution (see Fig. 7.17). 

7.3 The colloidal contribution to viscosity 

7.3.1 Ouerall repulsion between particles 
Overall repulsion between the particles of a suspension is created if the particles 

carry electrostatic charges of the same sign. The particles then take up positions as 
far from one another as possible. For flow to occur, particles have to be forced out 
of their equilibrium positions and induced to move against the electric fields of 
neighbouring particles into nearby vacancies in the imperfect lattice. Goodwin 
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Fig. 7.18 Particle size versus viscosity for a suspension of charged particles, for various particle phase 
volumes and charge. The viscosity is the sum of the two contributions given by eqns. (7.7) and (7.11). The 
value of E* used here is the difference in potential energy between the particle rest-state and the 
maximum potential it experiences as it "jumps" to the next rest-state site. The particle arrangement is 
assumed to be face-centred cubic. The charge on the particle is characterised by the value of K which is 
the inverse of the double-layer thickness. This is a measure of the distance over which the electrostatic 
potential acts, measured from the particle surface. 

(1987) has given the following equation to evaluate the extra contribution of 
repulsion to the zero shear-rate viscosity over and above the usual 
Krieger-Dougherty contribution: 

where h is Planck's constant, b  is the centre-to-centre particle separation and E * is 
the activation energy calculated for self-diffusion. 

This expression predicts very large (but finite) viscosities compared to the viscous 
contribution alone, as accounted for by the Krieger-Dougherty expression, (see Fig. 
7.18). The effects of particle size and concentration are very strong, the latter being 
accounted for in the E * factor. 

Goodwin also suggests that shear-thinning in such systems will become signifi- 
cant at a shear stress of the order of k ~ / b ~ .  

At very high shear rates, two-dimensional layering occurs and the electrostatic 
contribution loses its dominance. The viscosity decreases towards that given by the 
Krieger-Dougherty expression for non-interacting particles. 

The range of the electrostatic forces is greatly decreased if electrolyte is added to 
the solution, so screening the charges on the particles. This means that using 
electrostatic forces to thicken suspensions is limited to very pure systems, since 
slight electrolyte contamination can give a large decrease in viscosity. 

Repulsion can also arise from the entropic forces caused by the interaction of the 
chains of any polymer adsorbed onto the particle surfaces. Although not always 
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operating over great distances from the particle, they can affect the viscosity at high 
phase volumes. 

7.3.2 Overall attraction between particles 
The formation of flocs traps part of the continuous phase, thus leading to a 

bigger effective phase volume than that of the primary particles. This gives an 
additional increase in the viscosity over and above that expected from the phase 
volume of the individual particles. When flocculated suspensions are sheared, the 
flocs rotate, possibly deform and, if the applied stress is high enough, begin to break 
down to the primary particles. 

Flocs sometimes take the form of chains which form networks throughout the 
liquid. The length of the strands is a function of the shear stress. 

All flocculated structures take time to break down and rebuild, and thixotropic 
behaviour is usually associated with flocculated suspensions; clay suspensions being 
classic examples. The driving force to rebuild the floc is Brownian motion, and since 
this increases with decrease in particle size, the rate of thixotropic change is a 
function of particle size. Thus, one expects systems of large particles to recover their 
viscosity slower than systems of small particles. Similarly large-particle suspensions 
will break down faster under shearing. These considerations are important in the 
design of thlxotropic products such as paints and printing inks. 

The attraction between particles can be reduced in a number of ways, including 
the adsorbtion of molecules onto the surface of the particles. Adding electrolyte to 
clay suspensions can reduce the differential charge effects. In all these cases, the 
viscosity is reduced substantially. 

Flocculated systems usually have very high viscosities at low shear rate, and are 
very shear-thinning, often giving the impression of a yield stress (see Fig. 7.19). In 
many cases the Bingham model has been used to describe their behaviour. 

Fig. 7.19 Shear stress/shear rate curves for 1.5% by-weight suspensions of bentonite Supergel in water 
(O%), and with 0.2% and 1.5% sodium chloride additions. The corresponding curve for pure water is 
shown for comparison (Ippolito 1980). 
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7.4 Viscoelastic properties of suspensions 

Viscoelastic properties of deflocculated suspensions arise from particle interac- 
tions of all kinds. If these require a preferred arrangement of the particles at rest in 
order to fulfil some minimum energy requirement, there will always be a tendency 
for the suspension to return, or relax, to that arrangement. It is possible to make 
small perturbations about the preferred state by means of small-amplitude oscilla- 
tory-shear experiments. In this case the measure of elasticity is the dynamic rigidity 
G' (5 3.5). Figure 7.20 shows a typical example of such behaviour. 
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Fig. 7.20 Dynamic viscosity and dynamic rigidity G' as functions of frequency for polystyrene latex in 
M NaCl aqueous solution I#I = 0.35, particle radius = 0.037 pm. (J. Goodwin, private communica- 

tion.) 

Shear rote .  j / s - '  

Fig. 7.21 (a) Normal stress and viscosity versus shear rate for a PVC organosol ($I = 0.54) dispersed in 
dioctyl phthalate; (b) The relaxation time (defined as h = N,/o-) )  plotted against the shear rate derived 
from the data in (a). (Willey and Macosko 1978). 
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Elastic effects are also obsemab_le in a steady simple-shear flow through normal 
stress effects (cf. Chapter 4). This is demonstrated for a typical colloidal system in 
Fig. 7.21. In general, the normal stresses found in colloidal systems are lower than 
those in comparable polymeric liquids. 

7.5 Suspensions of deformable particles 

Many dispersions are made from deformable particles, the most obvious exam- 
ples being emulsions and blood. In dealing with the rheology of these systems, all 
the earlier factors like interparticle forces are relevant, but the effect of phase 
volume is not so extreme as with solids. The maximum phase volume is usually 
much higher than with solid particles since the particles deform to accommodate the 
presence of near neighbours. In this situation, the shape of the particles is poly- 
hedral and the suspension resembles a foam in its structure. Maximum packing 
fractions of 0.90 and above are usual (Pal et al. 1986). 

Figure 7.22 shows the viscosity/shear rate profiles for typical emulsions. The 
familiar shape seen for solid dispersions is again apparent as is the increasingly 
non-Newtonian behaviour with increase in concentration. However, the asymptotic 
value of viscosity at high shear rate is generally much lower than that observed for a 
dispersion of solid particles at the same phase volume. This effect is ascribable to 
particle deformation in the emulsion (see, for example, Fig. 7.23 and compare Fig. 
7.8). 

Whereas many model studies have been carried out on monodisperse solid 
particle dispersions, the usual mode of production of emulsions by droplet breakup 
means that making monodisperse droplet-size samples is difficult. Therefore, model 
studies have not always been able to distinguish between the relative effects of 
droplet size and the shape of the droplet-size distribution. What is clear however is 
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Fig. 7.22 Viscosity versus shear rate f ~ r  emulsions of silicone oil in water at various values of phase 
volume of oil. 
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Phase volume, @ 

Fig. 7.23 The relative viscosity of a wide-particle-size emulsion (see Pal et al. 1986) for a range of shear 
rates. Note the onset of shear-thinning is at + - 0.55 for this particular sample; cf. Fig. 7.22 where the 
emulsion is not so polydisperse and shear-thinning begins at + - 0.4. 

that a smaller droplet size and a more monodisperse droplet size both give an 
increase in viscosity. Since vigorous mixing of emulsions usually gives smaller and 
more monodisperse particles, increasing the energy input in emulsion manufacture 
always increases the viscosity. 

Theoretical work carried out by Oldroyd (1953) for very dilute emulsions showed 
that viscoelasticity results from the restoring force due to the interfacial tension 
between the continuous and disperse phases. The emulsion droplets at rest are 
spherical, but become ellipsoidal in shear, with a consequent increase in the surface 
area. 

Solid particles stabilised by adsorbed polymers can appear as deformable par- 
ticles when the particle size is very small (say < 100 nm). In this case the deformable 
stabilising layer can form a considerable proportion of the real phase volume. The 
overall effect is that the viscosity is a decreasing function of nominal particle size, 
when evaluated at constant phase volume (based on uncoated particles). In this case 
however the phase volume must be adjusted to take account of the stabilising layer. 
This can be obtained by measuring the viscosity of very dilute suspensions and 
applying Einstein's equation (eqn. (7.2)). 

7.6 The interaction of suspended particles with polymer molecules also present in the 
continuous phase 

There are at least four ways in which particles and polymer molecules interact: 

(i)  Neutrally. That is, the polymer merely acts as a thickener for the continuous 
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phase and the particles as inert fillers. The only overall effect is an increase in 
viscosity. Examples of this are found in various toothpastes. 

(ii) For specific polymers (e.g. block copolymers), some part of the polymer 
molecule adsorbs onto the particle while the other protrudes into the liquid phase. 
This can have the effect of hindering any flocculation that might take place, 
especially with very small particles, and hence prevent any ensuing sedimentation or 
creaming. The interacting polymer chains of adjacent particles overlap and cause 
entropic repulsion because their local concentration is higher than the average. 
Emulsion and dispersion stabilisers such as Gum Arabic are examples showing this 
phenomenon. 

(iii) Certain polymers have the ability to anchor particles together. This is called 
"bridging flocculation". They are usually very high molecular-weight macromole- 
cules with groups that attach to the particles by unlike charge attraction. These are 
deliberately introduced to cause flocculation in separation processes. An example is 
the use of the polyacrylamide family of polymers in water-clarification plants. The 
flocs formed by bridging flocculation are relatively strong and can withstand quite 
high stresses before breaking down. 

(iu) Some situations arise where polymers in the continuous phase can cause 
flocculation of the particles. This "depletion flocculation" arises when polymer 
molecules, because of their finite size, are excluded from the small gap between 
neighbouring particles. The concentration difference thus caused between the bulk 
and the gap causes an osmotic pressure difference. This results in solvent leaving the 
gap, thus pulling the particles together. This in turn means that even more polymer 
becomes excluded and the effect grows. Eventually the particles are completely 
flocculated. The floc strength of such a system is relatively small, certainly as 
compared to (iii) above. There must always be a tendency for this to occur in any 
system, but the time scale of the particle movement and the level of the force makes 
it possible to ignore it in some circumstances. 

7.7 Computer simulation studies of suspension rheology 

The computer simulations of flowing suspensions have been reviewed by Barnes 
et al. (1987). The simulations are not dissimilar to computer simulations of simple 
liquids such as argon and chlorine. Both simulations use the Newtonian equations 
of motion and a Lennard-Jones type of particle-particle interaction law. The main 
differences are that the interparticle forces are smaller and the hydrodynamic 
resistance to motion is much greater for the suspensions. 

The techniques of non-equilibrium molecular dynamics (NEMD) consider an 
assembly of particles which is given an initial set of positions in space and a set of 
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velocities. Assemblies of between one hundred and a few thousand can be dealt 
with. The NEMD calculation is the re-evaluation of the positions and velocities over 
a succession of short intervals (see, for example, Heyes 1986). From this information 
the stress tensor can be calculated, hence the viscosity and the normal stress 
differences. 

Given the similarities of approach, it is not surprising that the main results for 
simple liquids and suspensions are similar. Following a lower Newtonian region the 
systems display shear-thinning. At still higher shear rates the simulations predict 
shear-thickening. 

Considerable support for the existence of flow-induced structures in the shear- 
thinning region is provided by NEMD. The simulations show that suspensions of 
spherical particles form two-dimensional layers which break up at the onset of 
shear-thickening. The corresponding results in simple liquids are the formation of 
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Fig. 7.24 Typical predictions from a computer simulation of a suspension in shear flow (see Barnes, 
Edwards and Woodcock 1987). Note: density is normalized using particle parameters. (a) Viscosity 
versus shear rate, showing the qualitative features of Fig. 7.1; (b) Shows the trace of the stress tensor. 
This osmotic-type pressure results in particle migration to regions of lower shear rate. 
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strings of molecules aligned in the direction of flow and, for diatomic and longer 
molecules, an additional alignment of the molecules. 

The normal stress components are unequal at shear rates in the shear-thinning 
region and the differences increase with shear rate. The increase is slow compared 
with that predicted by polymer theory. Very little normal stress data have been 
obtained by NEMD and N, and N, generally show a considerable scatter. The 
results are often presented in terms of the trace of the stress tensor. This is also 
referred to as an osmotic pressure. 

Typical results are shown in Fig. 7.24 where the predicted osmotic pressure and 
viscosity of a dense suspension of submicron particles is shown as a function of 
shear rate. 

The technique of computer simulation is likely to become more important in the 
future, especially in its ability to study complicated but idealized systems. 



CHAPTER 8 

THEORETICAL RHEOLOGY 

8.1 Introduction 

An alternative title to this chapter could be "Constitutive equations and their 
uses" since it summarizes the vast majority of published work in theoretical 
rheology. 

The theoretician seeks to express the behaviour of rheologically complex materi- 
als through equations relating suitable stress and deformation variables. Such 
equations are of interest in themselves and continuum mechanics, which addresses 
such matters, is a respectable subject in its own right which occupies the attention of 
many theoreticians. The relevant equations, called constitutive equations or rheo- 
logical equations of state, must reflect the materials' microstructure and one fruitful 
area of study concerns the search for relationships between microstructure and 
(macroscopic) constitutive equations. We have already touched on this subject in 
56.8 and the reader is referred to the important books of Bird et al. (1987(b)) and 
Doi and Edwards (1986) for further details. 

Constitutive equations, which satisfy the basic formulation principles to be 
discussed in 58.2 and are constrained either by microstructure considerations or by 
the way the fluids behave in simple (rheometrical) flows, are also used by theoreti- 
cians to predict the way the relevant fluids behave in more complex flows of 
practical importance. Here, the constitutive equations are solved in conjunction with 
the familiar stress equations of motion and the equation of continuity, subject to 
appropriate boundary conditions. This is an important branch of non-Newtonian 
fluid mechanics and is discussed briefly in $8.7. 

Practical scientists and engineers may also look to constitutive equations for 
more modest reasons. For example, they may be interested in reducing experimental 
data to the knowledge of a small number of material parameters. This can be 
accomplished by comparing the forms of graphs relating, for example, viscosity/ 
shear rate and/or normal stress/ shear rate with the corresponding predictions from 
likely constitutive equations. 

It is not difficult to make out a case for a detailed study of theoretical rheology 
and many books are either devoted to the subject (like that of Truesdell and No11 
1965) or have substantial sections dealing with it (e.g. Lodge 1974, Bird et al. 
1987(a), Schowalter 1978, Tanner 1985, Astarita and Marrucci 1974 and Crochet et 
al. 1984). We have left the subject to the final chapter of the present book for 
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specific reasons, which have already been alluded to in 51.5. The subject is a 
difficult one by common consent and newcomers to the field (especially those 
without a mathematical background) are often put off by the complexity of the 
mathematics. In previous chapters we have attempted to cover the various strands of 
rheology without involving ourselves with intricate modern continuum mechanics, 
but it is now time to address this important subject and to point the interested 
reader in the direction of the many detailed texts and authoritative works on the 
subject. At the same time, sufficient attention is given to the subject in the present 
chapter to indicate to the reader, by way of an overview, the most important 
features of present-day knowledge of continuum mechanics. For most readers thls 
will be all that is required. For others, the growing list of available books on the 
subject is more than adequate for further detailed study. In thls connection we 
recommend particularly the books by Bird et al. (1987(a)), Schowalter (1978) and 
Truesdell and No11 (1965). Particular backgrounds and tastes vary greatly and many 
readers will no doubt obtain significant benefit from the theoretical sections in the 
other texts mentioned above. 

The following discussion is limited to isotropic, time-independent non-Newto- 
nian fluids. Readers interested in anisotropic fluid behaviour should consult the 
papers of Ericksen and Leslie (see, for example, Leslie 1966, 1979, Jenkins 1978). 
Those interested in thixotropy and antithixotropy are referred to the review article 
by Mewis (1979). The amount of theoretical literature on time-dependent materials 
is limited. The considerable conceptual difficulties in the subject are no doubt 
largely responsible for this deficiency. 

8.2 Basic principles of continuum mechanics 

We seek equations for complex non-Newtonian fluids (with or without fluid 
memory). To facilitate this, we need to define suitable stress and deformation 
variables and consistent time-differentiation and integration procedures. The rele- 
vant formulation principles required for this purpose are now well-documented and 
are not controversial. However, a cursory glance at the literature may give the 
reader the mistaken impression that there are two distinct kinds of formulation 
principles, one associated with the names of Oldroyd, Lodge and their coworkers 
and the other with the names of Truesdell, Noll, Coleman, Green, Rivlin, Ericksen 
and their coworkers. Certainly, the way the formulation principles are expressed and 
applied varies between these groups, but there have been sufficient objective reviews 
in recent years to prove to the perceptive newcomer to the field that the formulation 
principles of continuum mechanics have an invariance which is independent of the 
researcher! They can be expressed in different ways, but there is no essential 
controversy concerning the two basic approaches referred to and Chapter 2 of the 
text by Crochet et al. (1984), as well as discussions in other books, should convince 
the reader of this fact (see also the paper by Lodge and Stark 1972). 
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We may summarize the formulation principles as follows: 

Principle I. The constitutive equations must be independent of the frame of 
reference used to describe them. Expressing the equations in consistent tensorial 
form will ensure that this principle is automatically satisfied and, in a real sense, this 
principle is required of all physical theories. 

Principle II. The constitutive equations must be independent of absolute motion in 
space (Oldroyd 1950). Any superimposed rigid body motion cannot affect the basic 
response of the material *. 

Principle III. The behaviour of a material element depends only on the previous 
history of that same material element and not on the state of neighbouring elements 
(Oldroyd 1950). Expressed in an alternative way-the stress is determined by the 
hlstory of the deformation, and the stress at a given material point is uniquely 
determined by the history of deformation of an arbitrarily small neighbourhood of 
that material point (see, for example, Astarita and Marrucci 1974). The basic feature 
of principle III is that "fluid memory" as a concept must be associated with 
material elements and not with points in space. 

To illustrate how these principles (especially I and I I I )  apply in situations 
already discussed, consider again the general integral equations of linear viscoelas- 
ticity which were introduced in $3.4. These can be written in the tensorial form * * 

where T,, is the extra stress tensor; d,, the rate-of-strain tensor; p is an arbitrary 
isotropic pressure; 4, is the Kronecker delta, which takes the value zero for i # k 

* Coleman and No11 et al. define a principle called "the principle of material objectivity", which 
requires that the frame indifference of principle I must also apply to a time-dependent frame (see, for 
example, Truesdell and Noll 1965, Astarita and Marrucci 1974). In other words, it is principles I and 
II  combined. 

* * In this chapter we shall be forced to use general tensor analysis. We employ the usual notation-co- 
variant suffices are written below, contravariant suffices above, and the usual summation convention 
for repeated suffices is assumed. The need to distinguish between covariance and contravariance is 
made clear in the detailed texts on theoretical rheology ( e g  Lodge 1974). In rectangular Cartesian 
coordinates, we note that it is not necessary to distinguish between covariant and contravariant 
components. For readers meeting tensor analysis for the first time, we recommend a study of Foster 
and Nightingale (1979, pp. 1-14) Spain (1960, pp. 8-11) and Bird et al. (1987(a), pp. 597-606). 
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and unity for i = k; t is the present time and t'  an earlier time. 5 stands for x', x 2  
and x3, the Cartesian coordinates of a fixed point in space. In the corresponding 
one-dimensional version of (8.1) given in Chapter 3 (eqn. (3.21)), the dependence on 
5 was not made explicit, but it was implied. The reason for this was that the strains 
for which the linear theory applied were so small that the particles occupied 
essentially the same position in space throughout the deformation. 

If we attempt to use (8.1) under all conditions of motion and stress, we would 
arrive at the unphysical conclusion that the stress in the particle which is at the 
point 5 in space at the present time t is determined by the history of the rate of 
strain in all the particles which were at the same point at previous times t'. 

One simple (but incorrect!) way around this problem is to introduce the so-called 
displacement functions x" (defined such that x" (i = 1, 2, 3) is the position at time 
t '  of the element that is instantaneously at xi at time t )  and to write 

where d,, now relates to the position 5' .  This equation is certainly in sympathy 
with principle ZZZ since it relates "memory" to "particles" rather than "points in 
space", but eqns. (8.2) now equate a tensor at the point 5 with a tensor at the point 
5' and this violates principle I, so that the satisfaction of the formulation principles 
(and the above discussion refers to only two of them) is clearly nontrivial. 

The corresponding differential equations of linear viscoelasticity are also invalid 
under general conditions of motion and stress. Take, for example, the three-dimen- 
sional form of the simple Maxwell model given by 

The partial derivative, by definition, refers to the way the stress variable is changing 
with time at a particular point in space and, at the very least, this must be replaced 
by the convected (Lagrangian) time derivative D/Dt of hydrodynamics, in order to 
accommodate changes in a fluid element, where 

vm being the velocity vector. However, yet again, the situation is not that simple and 
the correct application of principle ZZ requires time derivatives of greater complexity 
than (8.4). These will be introduced later. 

Principles I to ZZZ are of fundamental importance in the formulation of rheologi- 
cal equations of state; however, we would also wish such equations to satisfy two 
further principles: 
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Principle IT/. In the case of elastic liquids, the deformation history of a material 
element in the distant past must be expected to have a weaker influence on the 
current stress response than the deformation history of the recent past. This is 
known as "the principle of fading memory". 

Principle V. The equations must be consistent with thermodynamic principles. 
Astarita and Marrucci (1974, p. 52) show that there are pitfalls in developing a 
purely mechanical rheological theory without due regard being paid to thermody- 
namics. For instance, the principle of "positive dissipation" can provide useful 
constraints on constitutive equations. At the same time, much of the literature which 
attempts to apply thermodynamics in a general way to continuum mechanics has 
not been too successful and much of it is controversial. 

8.3 Successful applications of the formulation principles 

In his classic 1950 paper, Oldroyd sought to satisfy the basic principles of 
formulation by introducing a convected coordinate system EJ  embedded in the 
material and deforming continuously with it, so that a material element which is at 
(J at one instant is at the same point (with respect to the convected coordinate 
system) at every other time. Oldroyd argued that, provided one works in a 
tensorially-consistent manner in the convected coordinate system, the basic princi- 
ples I-ZIZ are automatically satisfied, since using (El, E2, E3, t') as independent 
variables essentially satisfies the need to concentrate on fluid elements; thus moving 
away from the more usual "Eulerian" preoccupation with fixed points in space. 
Further, the ti coordinate system is unaffected by absolute (rigid body) motion in 
space and principle II  is satisfied automatically (provided, of course, that oper- 
ations like time differentiation and integration do not introduce any unwanted 
dependence on absolute motion in space). In this connection we note that a time 
derivative D/Dt holding convected coordinates constant is a convenient and valid 
differential operator. 

The metric tensor y,,($, t') of the EJ  system was taken by Oldroyd as the 
fundamental deformation variable *, since, in the usual definition, 

and y,,($, t') clearly provides a convenient measure of the distance ds ( t f )  between 
the parts of the arbitrary element at EJ. 

Oldroyd (1950) showed how his general theory could be used by means of some 
simple examples. One example was the so-called liquid A, which obeyed the 

* The contravariant metric tensor y" can also be used for this purpose (see, for example, Truesdell 1958, 
White 1964). 
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differential constitutive equation: 

where 7j1($, t )  is the extra stress tensor in the convected coordinate system * and 
q,, A, and A, are material constants. Another example was the integral model 
called liquid A': 

Wjr 
p ( g ,  t )  = I t  +( t - t r )  7 (5, t r )  d t r .  

-m  Dt - 

Having written equations in the convected coordinate system ti, Oldroyd showed 
how to transform equations like (8.6) and (8.7) into the fixed laboratory coordinate 
system xi. The relevant transformation rules for so doing were given by Oldroyd 
(1950). For example, the D/Dt time derivative of the differential models in 
convected coordinates must be replaced by the "codeformational" derivative b/b t, 
where, for a symmetric covariant tensor bik, we have 

and for a symmetric contravariant tensor bik, the relevant form is 

The derivative b/b t in eqns. (8.8) is often called the lower convected derivative and 
that given in eqns. (8.9) the upper convected derivative. The symbol A over the 
tensor being differentiated is usually employed for the lower convected derivative 
and the symbol v for the upper convected derivative. 

Oldroyd (1950) also showed that terms like Dy,,(g, tr)/Dt' in integral models 
like (8.7) need to be replaced by their so-called "Eulerian fixed components". For 
example, y,,(g, t ' )  has to be replaced in the fixed coordinate system x i  by GI,, 
where 

* In his development, Oldroyd used, for consistency and convenience, Greek letters for tensor variables 
in the convected 6' system and Roman letters for tensor variables in the fixed x i  system. 
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gik being the metric tensor of the xi  coordinate system. When the fixed coordinate 
system is Cartesian, we have g,, = am,, the Kronecker delta, and hence 

The equivalent stress tensor in fixed laboratory coordinates for liquid A' is 

ax rm ax fr  

d m r ( ~ ' ,  t ') dt'. (8.12) 
m 

We remark that the contravariant equivalents of (8.6) and (8.7) are called liquid B 
and B', respectively, and are given in fixed coordinates by 

and 

axi axk 

t )  = 2 1 t  + ( t  - t f ) -  - 
- cX 

a x fm  ax fr  dm'(&', t ' )  dt ' ,  

respectively. 
Oldroyd introduced models like the A and B series to illustrate the general 

theory, but their introduction gave the impression to some workers in the field that 
his formulation work was in some sense not completely general. This is now 
acknowledged to be a mistaken impression, but at the same time it is interesting to 
note that simple models like liquid B and liquid B' have figured prominently in 
modern developments in the numerical simulation of non-Newtonian flow (see, for 
example, Crochet et al. 1984). Some of the rheometrical consequences of Oldroyd- 
type models are given later in Table 8.3. 

For an updated version of Oldroyd's work on formulation, the reader is referred 
to the review article published posthumously in a commemorative volume (Oldroyd 
1984). 

The application of the formulation principles in the work of Coleman and No11 et 
al. takes a somewhat different path. Some general hypothesis is made on the 
relationship between stress and deformation. The formulation principles, applied 
within a Cartesian coordinate framework, are then used either to supply the 
resulting equations or at least to provide constraints on them. We shall refer to this 
procedure as " the formal approach". 

Occurring quite naturally in the development of Coleman and No11 et al. is the 
Eulerian fixed component equivalent of the tensor y,,, given in Cartesian coordi- 
nates by (8.11) and called the Cauchy-Green tensor. Also of importance is the 
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series expansion of Gik in terms of the so-called Rivlin-Ericksen (1955) tensors 
A(,? : 

The Rivlin-Ericksen tensors are related to the (lower convected) time derivative 
of Oldroyd through 

In a later development, White and Metzner (1963) derived the contravariant 
equivalents of the Rivlin-Ericksen tensors involving the Finger tensor Fik in place 
of the Cauchy-Green tensor Gik, where, in Cartesian coordinates, 

The resulting tensors have become known as the White-Metzner tensors and have 
an obvious counterpart to (8.16) with the upper convected Oldroyd derivative given 
by eqns. (8.9) replacing that in eqns. (8.16) (see, for example, Walters and Waterhouse 
1977). 

We may conclude that the basic framework of Oldroyd is matched in the 
developments of Coleman, No11 et al. and any differences in the application of the 
various techniques result from the particular outlook adopted rather than from any 
fundamental disagreement. 

The variables and operations needed to construct rheological equations of state 
are now known and it is simply a matter of employing and applying these within the 
context of certain constitutive proposals. In these proposals there may be a 
preoccupation with generality or, alternatively, a search for simplicity. A comprom- 
ise between the two is also a possibility. 

If our concern is with generality, we may write 

which expresses mathematically the requirement that the stress at time t is de- 
termined in a very general way by the history of the deformation. 9 is called a 
tensor-valued functional, and in the equation, the stress at time t is to be viewed as 
a function of the deformation measure, which is itself a function of the time variable 
t' with - co < t' < t .  The integrals in (8.12) and (8.14) are (simple) examples of a 
functional. 

When certain formal requirements of functional analysis are added to eqns. 
(8.18), we obtain the so called "simple fluid" of Coleman and Noll, which has had 
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an influential impact on constitutive theory (see, for example, Truesdell and No11 
1965). 

On account of their generality, eqns. (8.18) have limited predictive utility in 
non-Newtonian fluid mechanics and, not surprisingly, simpler equations have been 
sought. These arise from three distinct approaches: 

I .  One may relax the complete universality embodied in eqns. (8.18) but still 
make constitutive assumptions of some generality. Such developments are consid- 
ered in 58.4. 

II .  One may consider approximations arising from simplifications in the flow so 
that G,, in eqns. (8.18) has a relatively simple form. These approximations lead to 
general equations of state for restricted classes of flow. They are discussed in 58.5. 

III .  One may consider special (usually very simple) choices of the functional P. 
These lead to particular equations, which are nevertheless valid under all conditions 
of motion and stress. Examples of this sort are considered in detail in 58.6. 

8.4 Some general constitutive equations 

The formal approach was used by Reiner (1945) and Rivlin (1948) in a search for 
the most general constitutive equations for inelastic non-Newtonian fluids. The 
resulting model, which has become known as the Reiner-Rivlin model, has constitu- 
tive equations of the form 

where I2 and I ,  are the two non-zero invariants of the strain-rate tensor dl , .  
The behaviour of the Reiner-Rivlin model in a steady simple-shear flow can be 

easily determined. Surprisingly for an inelastic model, it predicts normal stresses. 
However the resulting normal stress distribution (viz. N, = 0, N2 + 0) is not of a 
form which has been found in any real non-Newtonian fluid. Consequently, any 
normal stress differences found experimentally in a steady shear flow can be viewed 
as manifestations of viscoelastic behaviour (cf. Chapter 4). 

A simplified version of the Reiner-Rivlin fluid given by 

where 

has been given significant prominence in the rheological literature. It is familiarly 
known as the "generalized Newtonian model". The form of the invariant I ,  given in 
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(8.21) is chosen such that it collapses to the shear rate i. in a steady simple-shear 
flow. 

The generalized Newtonian model can account for variable viscosity effects, 
through the function 7(12) ,  but not normal stress differences. Therefore, it has an 
obvious application to fluids which show significant viscosity variation with shear 
rate, but negligibly small normal stress differences, and also to flow situations where 
variable viscosity is the dominant influence (even though normal stress differences 
may be exhibited by the fluids under test). 

In an influential development, Rivlin and Ericksen (1955) used the formal 
approach to derive constitutive equations based on the general proposition that the 
stress is a function of the velocity gradients, acceleration gradients. . . (n - 1)th 
acceleration gradients. The resulting Rivlin-Ericksen fluid has equations of state of 
the form 

where f is a function of the Rivlin-Ericksen tensors introduced in (8.15). Useful 
constraints on the form of the function f have been found using routine matrix 
theory (see, for example, Truesdell and No11 1965). 

In a series of papers, Green, Rivlin and Spencer (1957, 1959, 1960) developed 
integral forms of eqns. (8.18), the lower-order approximations being essentially the 
same as the integral equations discussed in $8.5 (cf. eqns. (8.26)-(8.28)). The 
so-called Green-Rivlin fluids can be thought of as arising from a procedure 
analogous to the Taylor-series expansion of an analytic function (cf. Pipkin 1966) 
or, alternatively, from a direct application of the Stone-Weierstrass theorem (cf. 
Chacon and Rivlin 1964). 

8.5 Constitutive equations for restricted classes of flows 

There is no doubt that the simple fluid of Coleman and No11 has been the most 
influential application of the formal approach. The resulting equation is (8.18), with 
a suitably chosen function space and accompanying norm. In the original develop- 
ment, the function space(s) chosen by Coleman and No11 had certain limitations 
which were highlighted by Oldroyd (1965), who argued that the Newtonian fluid 
was not a special case of the simple fluid except in the limit of very slow flow. This, 
and related objections, have been overcome in the more recent work of Saut and 
Joseph (1983). 

Notwithstanding the original limitations mentioned above, the basic simple fluid 
hypothesis was studied to good effect by Coleman and Noll, who developed 
simplified constitutive equations for special classes of flows. Their most influential 
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contribution applies to so-called "slow flow", which to be precise requires the flow 
not only to be slow but also "slowly varying" *. 

The Coleman and No11 (1960) work on the slow flow of fluids with fading 
memory leads to a set of approximate equations (ordered by some convenient 
measure of "speed of flow"), the first three being expressible in the form 

where a,, p, etc. are all material constants. Equation (8.23) is the Newtonian model. 
Equations (8.24), called the second-order model, have been used extensively in 
modern non-Newtonian fluid mechanics. 

The slow-flow development is often referred to as the "retarded-motion expan- 
sion" and the resulting equations as the "hierarchy equations" of Coleman and 
Noll. Equations (8.23)-(8.25) h e  important because they provide convenient equa- 
tions for all simple fluids provided the flow is sufficiently slow. 

Another type of approximation may be obtained from the formal approach for 
the case when the "deformation is small". (Such a situation exists, for example, in 
the case of small-amplitude oscillatory shear flow.) When certain formal "smooth- 
ness" assumptions are made, the approximation leads to integral constitutive 
equations of the form (Coleman and No11 1961, Pipkin 1964) 

* This is an important observation for some flow situations. For example, on account of the no-slip 
hypothesis, flow near a reentrant comer may be regarded as "slow" but in no sense can such a flow be 
regarded as "slowly-varying", so that the Coleman and No11 development for the flow of fluids with 
fading memory does not apply to such situations (see, for example, Crochet et al. 1984). 
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where s = t - t' is the time lapse and, from the symmetry of the stress tensor, the 
kernel functions must satisfy 

Equations (8.26) are called the equations of finite linear viscoelasticity *, whilst 
(8.27) are called the equations of second-order viscoelasticity and so on. The 
small-deformation development of Coleman and No11 has much in common with the 
integral expansions of Green, Rivlin and Spencer (1957, 1959, 1960). Crochet et al. 
(1984) advocate care in the use of the integral expansions since their range of 
applicability is not as wide as might be anticipated. 

Many of the flow problems which are tractable by analytic methods fall into the 
category of "nearly viscometric flows", which are flows that are close to viscometric 
flows such as Poiseuille or Couette flow; the "closeness" can be defined in a precise 
mathematical way. Pipkin and Owen (1967) have addressed the possibility of 
obtaining constitutive equations for this restricted class of flows. They conclude 
that, in an integral formulation, thirteen independent kernel functions are required. 

So-called "motions with constant stretch history" have been studied by numer- 
ous theoretical rheologists, and the associated constitutive equations have been 
derived. The subject is covered in the books by Huilgol (1975), Lodge (1974) and 
Dealy (1982). 

8.6 Simple constitutive equations of the Oldroyd / Maxwell type 

The developments discussed in 58.4 and 58.5 must be viewed as important 
contributions to the subject, but most of the associated equations are of limited 
utility in the solution of practical flow problems, either on account of their 
complexity or their limited range of applicability. Accordingly, numerous attempts 
have been made to develop relatively simple constitutive equations with predictive 
capability. The form of these equations may be guided by a knowledge of the fluid's 
microstructure (cf. 56.8) or by the requirement that they must be able to simulate 
real behaviour in simple (rheometrical) flow situations. For example, the popular 
Oldroyd models arose originally from a desire to generalize (for all conditions of 
motion and stress) relatively simple linear equations like the Jeffreys model (eqn. 
(3.15)) which were known to be useful approximations for very dilute suspensions 
and emulsions under conditions of small strain (see, for example, Frohlich and Sack 
1946, Oldroyd 1953, Oldroyd 1958). 

It must be admitted that to model microstructure in any complete way would 
require prohibitive detail and some compromise is needed between capturing the 

-- - -  

* Employing an integration by parts, it is possible to show that (8.26) is equivalent to liquid A' (eqns. 
(8.12)). 
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known complexity of the physics and generating equations with predictive capabil- 
ity. 

A further factor of importance in the choice of constitutive model is the 
application in mind. For example, it is more important for the model to represent 
the extensional-viscosity characteristics (rather than, say, the normal-stress differ- 
ences) if the model is to be employed in a fibre spinning problem. 

In summary, simple constitutive models have to satisfy, ifpossible, the following: 

(i) they must satisfy the formulation principles discussed in g8.2. This is clearly 
not an optional requirement. The Oldroyd approach is ideally suited for this 
purpose; 

(ii) they should reflect the physics of the microstructure; 

(iii) they should be able to simulate the behaviour of the fluid in simple flows like 
steady simple shear, oscillatory shear and extensional flow; 

(iv) they should have regard to the application in mind. 

Given these constraints and the plethora of possibilities, it is not appropriate for 
us to favour one model at the expense of others, especially in view of the fact that 
history suggests that the popularity of a given model is often ephemeral. Rather, we 
list in tabular form many of the popular differential constitutive models which have 
appeared in the literature and can be viewed as having predictive capacity (see 
Tables 8.1 and 8.2). These can all 
canonical forms *: 

Tk = Ti1) + Tp, 
in which the terms on the right hand 

be regarded as special cases of the general 

(8.30) 

side are given by 

where, unless otherwise stated, A,, v,, q2, c, and a are all material constants and 
the derivative is given by * * 

where a is a scalar parameter. 

* For convenience, the models are expressed in a form appropriate to a rectangular Cartesian 
coordinate system. 

* * We recommend Crochet et al. (1984, Chapter 2) and Giesekus (1984) for a fuller discussion of the 
various time-derivatives of continuum mechanics. 
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TABLE 8.1 
Special cases of the general canonical form of constitutive equation (eqns. 8.30-8.33) 

Giesekus (1982) 0 a 0 AI lh 0 
Phan-Thien-Tanner 

(1977) 
Phan-Thien-Tanner B 

(Phan-Thien 1984) 
Johnson-Segalman 

(1977) 
White-Metzner 

(1963) 
Oldroyd B 
Corotational Oldroyd 

(Oldroyd 1958) 
Upper convected 

Maxwell A1 "Jl 

Not applicable in this form Second-order model 
Leonov (1987) 

We may also use the alternative canonical form 

where we have now omitted the 17, contribution and essentially replaced it by a 
retardation time A,. 

TABLE 8.2 
Special cases of the general canonical form of constitutive equation (eqn. 8.34) 

Giesekus (1982) 0 a 0 A1 0 71 
Phan-Thien-Tanner 

(1977) 
Phan-Thien-Tanner B 

(Phan-Thien 1984) 
Johnson-Segalman 

(1977) 
White-Metzner 

(1963) 
Oldroyd B 
Corotational Oldroyd 

(Oldroyd 1958) 
Upper convected 

Maxwell 
Second-order model 
Leonov (1987) 
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TABLE 8.3 
Rheometrical forms derived from some of the models in Tables 8.1 and 8.2 

Corotational 
q1 + 12 

2~111?z -- 
Oldroyd 1 + 1 + 2A?y2 

I )  3(n1 + 12) 

Johnson-Segalman 2 1 1 % ~ ~  211 
(1977) 

1 + 2 a  1 - -  i 
- ;N'(') 1 - 2(1 - a )  Ali 

Ill 

White-Metzner 
(1963) % ( ? )  

Giesekus (1982) Consult the reference for detailed expressions 

Equations (8.32), and by implication the term in A, in (8.34), can be viewed as a 
"Newtonian dashpot" contribution, either introduced to reflect the solvent contri- 
bution in liquids like polymer solutions or to ensure that the shear stress in a steady 
simple shear flow is a monotonic increasing function, of shear rate. Some of the 
so-called Maxwell models (with 17, = 0 or A, = 0) suffer from the problem of a stress 
maximum unless a = 0 or 2. 

For convenience, we list in Table 8.3 the main rheometrical functions derived 
from many of the models introduced in Tables 8.1 and 8.2. 

Not surprisingly, there have been similar developments involving integral equa- 
tions instead of the implicit differential models discussed above. These range from 
the comparative simplicity of the Lodge (1956) rubber-like liquid (whlch is essen- 
tially equivalent to liquid B') and more or less stop at the complexity provided by 
the so-called KBKZ model (cf. Bernstein et al. 1963), with constitutive equations 
which, in Cartesian coordinates, are essentially given by 
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where I, and I ,  are now the two non-zero invariants of G,,. We remark that the 
Doi-Edwards model discussed in $6.8.5 (with the added "independent-alignment" 
assumption) leads to an equation of the KBKZ type (see, for example, Doi and 
Edwards 1986, Marrucci 1986). 

8.7 Solution of flow problems 

We now consider the application of the work of the previous sections to the 
solution of non-Newtonian flow problems. To facilitate this, it is helpful to attempt 
a flow classification (cf. Crochet et al. 1984, Chapter 3). 

I. When the flow is "slow", the choice of constitutive model is self-evident (i.e. 
one of the hierarchy models (8.23)-(8.25)) and there is no merit whatsoever in 
employing any of the more complicated implicit differential or integral models 
discussed in the previous section (cf. Walters 1979). Flow problems in the case of 
slow flow invariably resolve themselves into perturbation analyses with "speed of 
flow" as the relevant perturbation parameter. 

II. When the flow is dominated by the shear viscosity, the generalized Newtonian 
model (8.20) can be employed. 

III. Many of the flow problems which have been solved successfully using 
analytic techniques fall into the category of "nearly viscometric flows". Linear 
stability analyses, flow caused by rotating bodies and various pipe flows can be 
placed in the category of nearly viscometric flows. We have already indicated that 
the general description of such flows is of prohibitive complexity and approximate 
equations have been employed in existing analyses. These become perturbation 
problems using the basic viscometric flow as the primary flow and a convenient 
(geometrical, flow or continuum) parameter as the perturbation variable. 

IV. The advent of powerful digital computers has seen interest in non-Newtonian 
fluid mechanics moving towards the solution of complex flow problems for highly 
elastic liquids: situations which are of practical importance. Differential and in- 
tegral equations at all levels of complexity are being employed in this expanding 
research field and it is probably true to say that, within reason, there are now few 
restrictions on the amount of detail that can be handled in the constitutive equation 
employed. The subject is covered in detail in the text by Crochet et al. (1984). The 
so called "high Weissenberg-number problem" which restricted all early work in the 
field is discussed in that text. However, we remark with interest that the recent work 
of Crochet and his collaborators (cf. Marchal and Crochet 1987) has not been so 
hampered by the high Weissenberg-number problem and the resulting numerical 
simulations are valid for conditions of practical importance where major changes in 
flow characteristics are observed. Any current discrepancies between theory and 
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experiment, and there are still some, can no longer be attributed (solely) to the high 
Weissenberg-number problem. Attention must now be focussed on other problems, 
viz. : 

(i) the possibility of three-dimensional flow characteristics occurring in seem- 
ingly two-dimensional flows; 

(ii) the possibility of "bifurcation" and lack of uniqueness in complex flows of 
highly elastic liquids; 

(iii) the inadequacies of the constitutive equations in current use for very 
complex materials; 

(iv) the incorrect numerical treatment of flow near reentrant corners and possibly 
also the incorrect numerical treatment of the extra constitutive difficulties associ- 
ated with long-range fluid memory. 

The field of the numerical simulation of non-Newtonian flow is developing 
rapidly and a constant update on current literature is recommended in this area. 



GLOSSARY OF RHEOLOGICAL TERMS 

This glossary is based mainly on the British Standard of the same title and 
numbered BS 5168:1975. It differs from the British Standard in that it is not 
intended to be comprehensive but limited to the terms which are most relevant to 
the present book. All quantitative terms have been given their SI units and symbols 
where this is feasible. The symbols are those used in this book and are therefore 
recommended; they include many which are recommended by the U.S. Society of 
Rheology and which were published in the Journal of Rheology (1984) - 28, 181-195. 

Anti-thixotropy An increase of the apparent viscosity under constant 
shear stress/rate followed by a gradual recovery when 
the stress or shear rate is removed. The effect is time-de- 
pendent (see negative thixotropy and rheopexy). 

Apparent viscosity 

Bingham model 

Biorheology 

Complex (shear) 
compliance 

The shear stress divided by rate of shear when this 
quotient is dependent on rate of shear. Also called 
viscosity and shear viscosity. 77 Pa.s. 

A model with the behaviour of an elastic solid up to the 
yield stress; above the yield stress, the rate of shear is 
directly proportional to the shear stress minus the yield 
stress (see eqn. 2.8b). 

The study of the rheological behaviour of biological 
materials. 

The mathematical representation of a (shear) compliance 
as the sum of a real and an imaginary part. The real part 
is sometimes called storage compliance and the imagin- 
ary part loss compliance. J* (for shear) Pa-'. 
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Complex (shear) 
modulus 

Complex viscosity 

Compliance 

Consistency 

Constitutive equation 

Continuum rheology 

Couette flow 
(circular) 

Couette flow 
(plane) 

Creaming 

Creep 

Dashpot 

The mathematical representation of a (shear) modulus as 
the sum of a real and an imaginary part. The real part is 
sometimes called storage modulus and the imaginary 
part loss modulus. G* (for shear) Pa. 

The mathematical representation of a viscosity as the 
sum of a real part and an imaginary part. The real part 
is usually called dynamic viscosity, the imaginary part is 
related to the real part of the complex shear modulus. q* 
Pa.s. 

The strain divided by the corresponding stress. J (for 
shear) pa-'. 

A general term for the property of a material by which it 
resists permanent change of shape. 

An equation relating stress, strain, time and sometimes 
other variables such as temperature. Also called rheo- 
logical equation of state. 

The rheology that treats a material as a continuum 
without explicit consideration of microstructure. Also 
called macrorheology and phenomenological rheology. 

Simple shear flow in the annulus between two co-axial 
cylinders in relative rotation. 

Simple shear flow between parallel plates in relative 
motion in their own plane. 

The rising of particles of the dispersed phase to the 
surface of a suspension. 

The slow deformation of a material; usually measured 
under constant stress. 

A model for Newtonian viscous flow, typically repre- 
sented by a piston moving in a cylinder of liquid. 
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Deborah number The ratio of a characteristic (relaxation) time of a 
material to a characteristic time of the relevant deforma- 
tion process. 

Deformation A change of shape or volume or both. 

Die swell A post-extrusion swelling. 

Dilatancy (1) An increase in volume caused by deformation. 
(2) Shear thickening (deprecated usage). 

Dynamic modulus Synonym of complex modulus. 

Dynamic viscosity (1) In classical fluid mechanics a synonym of coefficient 
of viscosity used to distinguish this quantity from 
kinematic viscosity. q Pa.s. 

(2) In rheology, the quotient of the part of the stress in 
phase with the rate of strain divided by the rate of 
strain under sinusoidal conditions. -q' Pas. 

Elastic(ity) A reversible stress/strain behaviour 

Elastic energy Synonym of strain energy. 

Elastic liquid A liquid showing elastic as well as viscous properties (see 
elastico-viscous, viscoelastic and memory fluid). 

Elastic modulus A stress divided by the corresponding elastic strain. Pa. 

Elastico-viscous A descriptive term for a liquid having both viscous and 
elastic properties. 

Elongational viscosity Synonym of extensional viscosity. 

Equation of state Synonym of constitutive equation. 
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Extensional viscosity 

Extensional strain 

Extensional strain rate 

Extra-stress tensor 

Flow 

Flow birefringence 

Flow curve 

High elasticity 

Hooke model 

Intrinsic viscosity 

Isotropic 

Kelvin model 

Kinematic viscosity 

The extensional (tensile) stress divided by the rate of 
extension. Also called elongational viscosity and Trou- 
ton viscosity. qE Pas. 

Relative deformation in extension. c. 

The change in extensional strain per unit time. < s-'. 

The difference between the stress tensor and the iso- 
tropic pressure contribution; used for incompressible 
materials. T,  Pa. 

A deformation, of which at least part is non-recoverable 
(rheological usage). 

The optical anisotropy caused by flow. 

A curve relating stress to rate of shear (cf. rheogram). 

The ability of a material to undergo large elastic strains. 

A model representing Hooke's law of elasticity, e.g. a 
spring. 

The limiting value of the reduced viscosity as the con- 
centration approaches zero. [ q ] .  

Having the same property in all directions. 

A mechanical model consisting of a Hooke model and 
Newtonian fluid model in parallel. Also called Voigt 
model. 

In classical fluid mechanics, the dynamic viscosity di - 
vided by the density of the material. v m2 s-'. 

Laminar flow Flow without turbulence. 
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Linear viscoelasticity 

Loss angle 

Loss compliance 

Loss modulus 

Macrorheology 

Maxwell model 

Melt fracture 

Memory fluid 

Microrheology 

Model 

Modulus 

Navier-Stokes 
equations 

Necking 

Negative thixotropy 

Viscoelasticity characterized by a linear relationship 
between stress and strain. 

The phase difference between the stress and strain in an 
oscillatory deformation. 

The imaginary part of the complex compliance. J" (for 
shear) Pa-'. 

The imaginary part of the complex modulus. G" (for 
shear) Pa. 

Synonym of continuum rheology. 

A mechanical model consisting of a Hooke model and a 
Newtonian fluid model in series. 

The irregular distortion of a polymer extrudate after 
passing through a die. 

Synonym of elastic liquid. 

The rheology in which account is taken of the micro- 
structure of materials. 

An idealized relationship of rheological behaviour ex- 
pressible in mathematical, mechanical or electrical terms. 

In rheology, the ratio of a component of stress to a 
component of strain. Pa. 

The equations governing the motion of a Newtonian 
fluid. 

The non-uniform local reduction of the cross-sectional 
area of a test piece under extension. 

Synonym of anti-thixotropy. 
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Newtonian fluid model A model characterized by a constant value for the 
quotient of the shear stress divided by the rate of shear 
in a simple shear flow and with zero normal stress 
differences (see dashpot). 

Non-Newtonian fluid Any fluid whose behaviour is not characterized by the 
Navier-Stokes equations. 

Normal force (1) A force acting at right angles to a specified area. N. 
(2) In rheology, a force acting at right angles to an 

applied shear stress. N. 

Normal stress The component of stress at right angles to the area 
considered. a,, Pa. 

Normal stress 
difference 

Normal stress 
coefficient 

Overshoot 

The difference between normal stress components. N, 
Pa. 

A normal stress difference divided by the square of the 
rate of shear. q, pas2. 

The transient rise of a stress above the equilibrium value 
at the start up of simple shear flow. 

Plastic(ity) The capacity of a material to be moulded but also to 
retain its shape for a significant period under finite 
forces; showing flow above a yield stress. 

Plastic viscosity For a Bingham model, the excess of the shear stress over 
the yield stress divided by the rate of shear. q ,  Pas. 

Poiseuille flow Laminar flow in a pipe of circular cross section under a 
constant pressure gradient. 

Power-law behaviour Behaviour characterized by a linear relationship between 
the logarithm of the shear stress and the logarithm of the 
rate of shear in simple shear flow. 

Pseudoplasticity Synonym for shear-thinning (usage deprecated). 
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Rate of shear 

Reduced viscosity 

Relative deformation 

Relative viscosity 

Relaxation time 

Retardation time 

Reynolds number 

Rheogoniometer 

Rheogram 

Rheological equation 
of state 

Rheology 

Rheometer 

Rheopexy 

(See shear rate). 

The specific viscosity per unit concentration of the 
solute or the dispersed phase. m3 kg-'. 

The measurement of deformation relative to a reference 
configuration of length, area or volume. Also called 
strain. 

The ratio of the viscosity of a solution to that of the 
solvent or of a dispersion to that of its continuous phase 
(see viscosity ratio). qr. 

The time taken for the shear stress of a fluid that obeys 
the Maxwell model to reduce to l / e  of its original 
equilibrium value on the cessation of steady shear flow. 

The time taken for the strain in a material that obeys the 
Kelvin model to reduce to l / e  of its original equilibrium 
value after the removal of the stress. 

The product of a typical apparatus length and a typical 
fluid speed divided by the kinematic viscosity of the 
fluid. It expresses the ratio of the inertia forces to the 
viscous forces. Re .  

A rheometer designed for the measurement of normal as 
well as shear components of the stress tensor. 

A graph of a rheological relationship. 

Synonym of constitutive equation. 

The science of the deformation and flow of matter. 

An instrument for measuring rheological properties. 

Synonym of anti-thixotropy. 
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Rigidity modulus 

Secondary flow 

Shear 

Shear compliance 

Shear modulus 

Shear rate 

Shear strain 

Shear stress 

Shear viscosity 

Simple shear 

Soft solid 

Synonym of shear modulus. 

The components of flow in a plane orthogonal to the 
main direction of flow. 

(1) The movement of a layer of material relative to 
parallel adjacent layers. 

(2) An abbreviation of shear strain. 

The elastic shear strain divided by the corresponding 
shear stress. J pa-'. 

The shear stress divided by the corresponding elastic 
shear strain. Also known as rigidity modulus. G Pa. 

The change of shear strain per unit time. j. s-'. 

Relative deformation in shear; term often abbreviated to 
shear. y. 

The component of stress parallel to (tangential to) the 
area considered. o Pa. 

The increase of viscosity with increasing rate of shear in 
a steady shear flow. 

The reduction of viscosity with increasing rate of shear 
in a steady shear flow. 

Synonym of apparent viscosity. 

A shear caused by the parallel relative displacement of 
parallel planes (see viscometric flow). 

A descriptive term for a material exhibiting plastic 
behaviour. 



Glossary of rheological terms 167 

Specific viscosity 

Spinnability 

Steady flow 

Storage compliance 

Storage modulus 

Stored energy 

Strain 

Strain energy 

Stress 

Stress relaxation 

Stress tensor 

The difference between the viscosity of a solution or 
dispersion and that of the solvent or continuous phase, 
divided by the viscosity of the solvent or continuous 
phase. q,,. 

The capacity of a liquid to form stable extended threads. 

A flow in which the velocity at every point does not vary 
with time. 

That part of the (shear) strain that is in phase with the 
(shear) stress divided by the stress under sinusoidal 
conditions. J' (for shear) Pa-'. 

That part of the (shear) stress that is in phase with the 
(shear) strain divided by the strain under sinusoidal 
conditions. G' (for shear) Pa. 

Synonym of strain energy. 

The measurement of deformation relative to a reference 
configuration of length, area or volume. Also called 
relative deformation. 

The energy stored in a material (per unit volume) by the 
elastic strain. Also called elastic energy. ~ m - ~ .  

A force per unit area. Pa. 

The decrease of (shear) stress on the cessation of steady 
(shear) flow, usually when the stress in the original 
steady (shear) flow has reached equilibrium. 

A matrix of the shear stress and normal stress compo- 
nents representing the state of stress at a point in a 
body. a,, Pa. 
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Taylor number 

Taylor vortices 

Tension 

Tension-thickening 

Tension-thinning 

Thixotropy 

Time-temperature 
superposition 

Trouton ratio 

Trouton viscosity 

Turbulence 

Velocity gradient 

A dimensionless group associated with viscous instabili- 
ties in circular Couette flow, the value of which depends 
on the kinematic viscosity and on the radii and velocities 
of the cylinders. 

The secondary flow consisting of ring-like cell vortices 
associated with an instability in circular Couette flow 
when the Taylor number exceeds a certain value. 

A force normal to the surface on which it acts and 
directed outwards from the body. N. 

An increase in extensional viscosity with increasing rate 
of strain in a steady extensional flow. 

A decrease in extensional viscosity with increasing rate 
of strain in a steady extensional flow. 

A decrease of the apparent viscosity under constant 
shear stress or shear rate, followed by a gradual recovery 
when the stress or shear rate is removed. The effect is 
time-dependent. 

The scaling of the results of shear strain experiments 
carried out at different temperatures to fit onto a single 
curve. 

The ratio of extensional to shear viscosities. 

Synonym of extensional viscosity. 

A condition of flow in which the velocity components 
show random variation. 

The derivative of the velocity of a fluid element with 
respect to a space coordinate. s-'. 
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Viscometer 

Viscometric flow 

Viscosity 

Viscosity ratio 

Voigt model 

Weissenberg effect 

Weissenberg number 

Yield stress 

Young's modulus 

Having both viscous and elastic properties. This term is 
sometimes restricted to solids. 

An instrument for the measurement of viscosity. 

A laminar flow which is equivalent to a steady simple- 
shear flow. Such a flow is determined by a maximum of 
three material functions: the viscosity function and two 
normal stress functions. 

(1) Qualitatively, the property of a material to resist 
deformation increasingly with increasing rate of de- 
formation. 

(2) Quantitatively, a measure of thls property, defined 
as the shear stress divided by the rate of shear in 
steady simple-shear flow. Often used synonymously 
with apparent viscosity, q Pas .  

Synonym of relative viscosity. 

Synonym of Kelvin model. 

An effect found in non-Newtonian fluids manifested, for 
example, in the climbing of the fluid up a rotating rod 
dipping into it. A normal stress effect. 

The product of the relaxation time, or some other 
characteristic time of a material, and the rate of shear of 
the flow. We. 

The stress corresponding to the transition from elastic to 
plastic deformation. a,, Pa. 

The extensional (tensile) stress divided by the corre - 
sponding extensional strain of an elastic material, mea- 
sured in uniaxial extension. E Pa. 
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Boundary conditions, 141 
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British Society of Rheology. 1 
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flow, 14 
rheometer, 87 
viscometer, 32 

on-line version, 35 
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influence of, 104 
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Maxwell model, 48 
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Computer modelling, 121 
Computer simulation 
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(see surfactant solution) 

Dl polymer solution, 72 
D3 polymer solution, 73 
Dashpot, 40, 42, 155, 160 
Deborah number, 5, 6, 161 
Deflocculated suspensions, 23, 116 
Deformation history, 145, 161 
Depletion flocculation, 137 
Detergents, v, 25 
Di-(2-ethylhexyl)6ebacate, 15 
Die swell, 62, 63, 161 

negative, liquid crystals in, 105 
Differential constitutive equation, 144, 

145, 153, 155, 156 
Digital computers, 156 
Dilatancy, 16, 161 
Dilute 

emulsions, 42 
polymer solutions, 75, 99 

suupensions, 120 
solid elastic spheres, 42 

Dip coating, 13 
Disc impellers, 63 
Dispersed phase concentration, 123 
Dispersion stabilisers, 137 
Displacement fluid, 114 
Displacement functions, 144 
Distribution function 

relaxation times of, 45 
Doi-Edwards model/theory, 109, 156 
Doi-Edwards-& Gennes 

tube concept, 109 
Double-layer thickness, 132 
Drag reduction in turbulent flow, 79 
Drainage 

toilet bleaches, 13 
coating, 13 
painting, 13 

Drilling fluids, viscosity, 15, 115 
Droplet 

breakup, 135 
stretching 

extensional viscosity from, 89 
Dumbell model, 107 
Dynamic viscosity, 38, 48, 53, 160, 161, 

162 
Cox-Mexz rule in, 99 

Dynamic rigidity, 47, 48, 53, 71, 72, 
134, 161 

Cox-Merz rule in, 99 

Edge effects in rheometry, 65, 68 
EdgeEface attraction, clay particles, 116 
Effective phase volume, 133 
Einstein's equation, 119, 136 
Elastic 

effects, 134 
liquid mixing in, 63 

energy, 161, 167 
liquids, 3, 6, 161 

complex flows of, 9, 10, 156 
modulus, 105, 161 
recovery, 106 
shear strain, 166 
solid, 159, 163 

Elasticity modulus, 45 
Elastico-viscous, 6, 161 
Electrostatic effects, 116-1 18, 13 1, 132 
Ellis model, 126 
Elongational viscosity, 161, 162 

(see extensional viscosity) 



Emulsions, 16, 75, 115, 135, 136, 152 
dilute, 42 
droplets in, 56 
manufacture, 136 
stabilisers, 137 
silicone oil in water, 135 
wide-particle-size, 136 

End effects in viscometers, 28 
Energy dissipation, rate of, 14 
Engineering applications 

use of Bingham model, 21 
Enhanced oil recovery (EOR), 78, 113 
Entanglements, 98, 103, 108 
(see intermolecular associations) 

Entrance correction 
extensional viscosity, 33 

Entropic 
repulsion, 116, 137 
forces, 132 

polymeric systems, 56 
springs, 106 

Equation 
of continuity, 141 
of state (rheological), 148, 160, 161 

Etymology of rhwlogy, 1 
Eulerian, 145 

steadiness, 54, 85 
Everyday time-scale, 4 
Exit effects in pipe-flow, 33 
Exit-pressure measurement technique, 70 
Extensional flow, 9, 114, 129, 153, 161, 

168 
biaxial, 76, 86 
PI=, 77 
steady, 168 
strain, 162 
strain rate, 75, 162 
uniaxial, 16 

Extensional viscosity, 75, 112, 114, 155, 
161, 162, 168 

biaxial, 77 
planar, 77 
uniaxial, 75 
(see elongational viscosity) 

Extensional viscosity from 
constant stress devices, 84 
contraction flow, 98 
controlled strain rate experiment, 82 
controlled stress experiment, 82 
droplet-stretching, 89 
fibre spinning, 84, 85 
homogeneous stretching method, 83 

open-syphon method, 89 
opposing-jet techniques, 89 
radial filament elongation, 89 
stagnation-point devices, 89 
triple-jet technique, 89 

Extensional viscosity of 
HDPE, 90 
W A C  A W E ,  91 
LDPE, 90 
Phan Thien and Tanner model, 81 
polyacrylamide, 95 
1175 grade, 92 
El0 grade, 93 

polyethylene oxide WSR 301 grade, 95 
polystyrene, 90 
suspensions of slender particles, 82 
xanthan gum, 93 

Extra stress tensor, 143, 162 
Extraction of oil, 113 
Extrusion, 13, 63, 112, 113 

shear rates in, 13 

Fabric conditioner 
power-law parameters of, 22 
Sisko model use of, 22 

Face-centred cubic 
packing of particles, 120, 132 

Fading memory, 151 
Falling-ball viecometer, 26 
Fanis effect, 122 
FENE-dumbcll model, 108 
Fenanti-Shirley visccmeter, 27 
Fibre spinning, 153 

and extensional viscosity, 77, 84, 85 
filament-necking imperfection in. 78 

Fibres, 112 
Film blowing, 112 
Finger tensor, 148 
First normal stress difference, 55, 57, 

59, 98, 99, 107, 111, 155 
First (lower) Newtonian region, 16, 99, 

115 
Flamethrowers, 3 
Flocculation, 116, 119, 121, 137 

bridging, 137 
depletion, 137 

Flocs, 117, 121, 133, 137 
Flow 

birefringence, 9, 65, I62 
classification, 156 
curve, the, 162 
induced anisotropy, 56 



induced structures, 119, 138 
through contractions, 10, 112 

Fluid mechanics 
Newtonian, 3 
non-Newtonian, 141, 149, 151 

Fluid memory, 142, 143 
Flush-mounted transducers, 65, 68, 70, 

7 1 
Foodstuffs, 3, 115 
Forced oscillation testing, 53 
Ford-cup viscometer, 26 
Formulation principles, 142, 144 
Four-roll mill, % 
Fracturing of polymers, 101 
Frame indifference, 143 
Free oscillation/vibration testing, 53 
Free volume, 101 
Functional analysis, 7, 148 

Gap setting errors in viscometers, 31 
Gap width, importance of, 14 
Gasoline engines, lubrication in, 13 
G, rule, use of, 98 
Gear teeth, flow between, 5 
Gelatine, 104 
Gels, yield stress in, 17, 105 
General integral representation, 46, 48 
Generalised 

Kelvin model, 43 
Maxwell model, 43 
Newtonian model, 149 

Giesckus model, 155 
Giesekus-Bird theories, 107, 108 
Glass 

plate and rod suspensions, 125 
processing of, 13 
viscosity of, 11 

Glass-fibre suspensions, 124, 125 
Glass forming polymers, 101 
Glass transition 

and free volume, 101 
and latent-heat, 101 
in liquid-state theories, 101 

in, 101 
temperature of 

high density polyethylene, 101 
low density polyethylene, 101 
nylon-66, 101 
polyethylene terephthalate, 101 
polystyrene, 101 

G l y c e ~ e ,  2 
(see also glycerol) 

Glycerol, viscosity of, 11 
Golden syrup, viscosity of, 11 
Greases, 12, 20, 128 
Green-Rivlin fluids, 150 
Ground gypsum suspensions, 125 
Gum arabic. 137 

Haake viscometer, 18 
Hagenbach and Couette formula, 33 
HDPE, extensional viscosity of, 90 

(see high-density polyethylene) 
Heat-sensitive polymers, 112 
Heat-transier 

pipe-flow in, 34 
viscometers in, 14 

Hencky strain 
definition of, 82 
largest used, 83 

Hierarchy 
equations, 56, 151 
model, 156 

High Weissenberg-number problem, 156 
High density polyethylene 

glass transition temperanut of, 101 
melt-processing temperature of, 101 
melting point of, 101 

Hole-pressure error, 33, 68, 70 
Homogeneous stretching method for - 

extensional viscosity, 83 
Hooke model, 40, 162 
Hooke's law, 3, 162 
Hookcan elastic response, 2, 3, 5, 6, 

37, 39, 52 
Hoop stress in rod-climbing, 60 
HP3L equations, 71 
Hy drodynarnic 

forces, 116 
lubrication, 113 
resistance, 137 

Ice cream, yield stress in, 17 
Independent-alignment assumption, 109, 

156 
Indicial notation, 7 
Industrial process modelling, 9 
Industrial shop floor viscometers, 26 
Inelastic non-Newtonian fluids, 24, 114, 

149 
definition of, 55 

Inert fillers, 137 
Inertia 

in rheometry, 51 



Inertia (cont) 
in pipe-flow, 33 

Injection moulding, 112 
Integral 

equations, 143, 151, 155 
expansions, 152 
formulation, 152 

Interfacial effects, 42, 113 
Internal friction, 2 
Intramolecular forces and 

viscoelastic phenomena, 106 
Intrinsic viscosity, 103, 104, 121, 123, 

162 
Isotropic pressure, 143, 162 

constitutive equations in, 8 
IUPAC A LDPE sample, 82 
extensional viscosity of, 91 

Jeffreys model, 42, 43, 152 
Jet-thrust technique, 63, 70 
Johnson-Segalman model, 108, 154 
Journal bearings, 1 13 
Judges, Book of, 5 

Kaolin in medicines, 114 
KBKZ model, 109, 155 
Kelvin model, 39, 40, 41, 43, 44, 162, 

165 
Kernel functions, 152 
Kinematic viscosity, 161, 162 
Kinetic theories, 106-108 
Krieger variable, 126 
Krieger-Dougherty equation, 125, 132 
Kronecker delta, 143 

Lagrangian steadiness, 54 
Laterite suspensions, 125 
Latices, 125, 126, 130 
LDPE, extensional viscosity of, 90 

(see low-density polyethylene) 
Lennard-Jones interactions, 137 
Leonov model, 154, 155 
Levelling effects, 13 
Light diffraction, 119 
Linear 

stability analyses, 156 
viscoelastic behaviour, 4, 37, 46, 49, 

107 
static and dynamic, 51 

viscoelasticity, 50, 143, 163 
general differential equation, 38, 

47, 144 

Liquid 
definition of, 6 
Newtonian, 5 

Liquid A, 151 
Liquid B, 155 
Liquid abrasive cleaners, 114, 115 
Liquid crystal polymers, 22, 56, 105 - 
Liquid detergents, 3 
Liquid-like 

behaviour, 6 
material, 52 
solids, 4 

Liquid-state theories, 101 
Lodge 

rubber-like liquid, 108, 155 
stressmeter, 70 

viscometer version of, 35 
London-van der Wads attraction, 116 
Loss 

angle, 49, 163 
compliance, I63 
modulus, 47, 163 

Lotions, application of, 13 
Low density polyethylene 

glass transition temperature of, 101 
melt-processing temperature of, 101 
melting point of, 101 

Lower Newtonian region, 16 
Lubricants, 1 

high-shear rate viscosity, 38 
viks i ty  / pressure dGndence of, 15 

Lubricated-die rheometer, 86 
Lubricating grease, 1 18 

yield stress in, 17 
Lubricating oils, 6 

characteristic time of, 5 
temperature dependence of, 14 

Lubrication, 113 
approximation, 112 
high temperature, 25 
shear rate during, 13 

Macrorheology, 160, 163 
Margarine, yield stress in, 17 
Master curves, 111 
Maximum packing fraction 

or phase volume, 120, 121, 123 
Maxwell model, 39, 41, 42, 47, 144, 

155, 163, 165 
characteristic natural time, 48 
generalised, 43 
oscillatory shear behaviour, 49 



upper-convected, 107, 154 
Maxwell orthogonal rheometer, 54 
Maxwell's elastic fluid, 3 
Measurement accuracy 

rheornetry in, 68 
viscometry in, 13 

Mechanical models, 40, 162 
canonical forms of, 43, 44 

Medicines, 13, 115 
Melt 

flow instabilities, 113 
fracture, 113, 163 

Melt-processing temperature of 
high density polyethylene, 101 
low density polyethylene, 101 
nylon-66, 101 
polyethylene terephthalate, 101 
polystyrene, 101 

Melting point of 
high density polyethylene, 101 
low density polyethylene, 101 
nylon-66, 101 
polyethylene terephthalate, 101 

Memory fluid, 6, 161, 163 
Method of reduced variables, 109 
Microrheology, 163 
Microstructure, 141 
Milling of pigments, 13 
Minimumenergy state, molecules in, 
Mixing, shear rate during, 13, 112 
Modulus, I63 

complex, 160, 161 
loss, 160 
rigidity, 166 
shear, 160 
storage, 160 

Molecular 
adsorption, 137 
models and extensional flow, 81 
structure, 10 
theories, 106 

Molecular weight 
distribution, 25, 63 

influence of, 104 
viscosity relationship 

polybutadiene, 102 
polydimethylsiloxane, 102 
polymethylmethacrylate, 102 
polystyrene, 102 

Mooney system 
viscometers based on, 28 

Motions 

with constant stretch history, 152 
Multigrade oils, 3, 25, 71, 113 

Naphthenic mineral oil, 15 
Narmw-gap approximation, 29 
Natural gums, 114 
Navier-Stokes equations, 2, 3, 6, 

163, 164 
Nearly viscometric flows, 152 
Necking, I63 
Necklace model, 106, 107 
Negative die swell and normal stress 

difference, 105 
Negative normal stress effect 

inertial origin of, 67 
Negative thixotropy, 24, 159, 163 

(see also anti-thixotropy) 
NEMD calculation, 138, 139 
Network models, 108 
Newtonian 

behaviour, 2, 3, 5, 6, 8, 11, 15, 65 
dashpot, 40, 155 
equations, 137 
fluid mechanics, 3 
model, 164 

generalised, 149, 156 
standardid liquids, 25 

No-slip hypothesis, 151 
106 Non-Newtonian, 6, 16 

flow, 156 
fluid mechanics, 141, 149, 151 
fluids, 164, 169 

Non-drip paint, 3, 4 
Non-equiiibrium molecular dynamics 
(NEMD), 137 

Non-linear viscoelasticity, 37 
Non-linear cross-section pipe flow, 64 
Non-linearity, importance of, 4 
Non-settling suspensions, 20 
Normal force, 164 

measunment using 
cone-and-plate flow, 65 
flush-mounted transducers, 65 

pump, 62 
Normal stress difference, 8, 9, 15, 55, 

113, 138, 141, 149, 150, 153, 
164, 167, 169 

coefficients, 55, 108, 169 
first, 55, 56, 57, 59, 98, 99, 107, 108 
negative, 105 
second, 55, 56, 57, 59, 70, 107 
thermodynamic origin, 57 



Normal stress distribution, 149 
tension along streamlines 

equivalence, 59 
Normal stress effects in mixing. 63 
Normalised frequency, 48 
(see reduced frequency) 

Numerical simulation, 10, 147, 156, 157 
Nylon-66 

glass transition temperature of, 101 
melt-processing temperature of, 101 
melting point of, 101 

Optical anisotropy, 162 
Oil 

bicycle, viscosity of, 11 
lubricating 

tempe&re dependence of, 12 
multi-grade, 25, 71 
olive, viscosity of, 11 

Oldroyd models, 107, 152, 154, 155 
On-line viscometers, 35 
Onset of 

shear-thickening, 130 
melt flow instabilities, 113 

Open tilted trough technique, 71 
Open-syphon effect with 

polyethylene oxide, 94, 95 
Open-syphon method 

extensional viscosity from, 89 
Oppanol 
@SO), 58 
@ZOO), 60, 61, 72 
(see polyisobutylene) 

Opposing-jet techniques 
extensional viscosity from, 89 

Optical diffraction system, 128 
Orientation vector, liquid crystals in, 105 
Orifice flow, 77, 87 

Binding analysis for, 88 
Oscillatory shear, 47, 153 

high frequency measurements, 103 
Maxwell model, 49 
Rheogoniometer for, 52 
small amplitude, 9, 46, 71, 107 

Osmotic pressure, 138, 139 
Overshoot. 164 

Packing fraction, maximum, 135 
Painting 

drainage during, 13 
shear rate during, 13 

Paints, v, 1, 13, 13, 114, 115, 133 

Paper coating 
importance of extensional flow in, 79 
shear rate during, 13 

Parallel sliding plate rheometer, 65 
Parallel-plate viscometer, 3 1 
Particle 

asymmetry, 123 
density, 116 
hydrodynamic redistribution, 128 
layers, 119 
migration, 128 
overall attraction between, 133 
polyhedral, 135 
shape, 120 
size, 136 
surfaces, polymer adsorbed onto, 132 

Particle-filled polymer gel, 105 
Particle-particle interaction, 137 
Particle-size distribution, 120, 121, 128, 

131 
Pastes, yield mess in, 17 
Pklet number (modified), 126 
Permanent cross-links, 108 
Pernubation 

analyses, 156 
parameter, 156 

Phan Thien and Tanner model, 154, 155 
extensional viscosity of, 81 

Pharmaceutical industry, 3 
Phase separation, 127 
Phase changes 

detergent based liquids, 25 
Phase lag, 53 
Phase volume, 116 

effect of, 127 
effective, 133 
maximum, 135 
(see packing k t i o n )  

Phenomenological rheology, 160 
Photo-degradation 

anti-misting polymer of, 23 
Physical chemistry, 6 
Pigment 

dispersion, 117 
milling of, 13 

Pip: flow 
entrance effects in, 33 
exit effects in, 33 
heat-transfer in, 34 
inertial losses in, 33 
laminar, Newtonian, 32 
non-linear cross-section pipe, 64 



power-law liquids, flow in, 32, 34 
Rabinowitsch correction, 32 
scale-up of, 33 
shear rate during, 13 
shear-stress in, 32 
thixotropic material in, 25 
velocity profile in, 34 
viscous losses in, 33 

Plane Couette flow, 65, 160 
Plastic 

behaviour, 166 
deformation, 169 
viscosity, 164 

Plastic(ity), 164 
Plastic-rigid solid, 5 
Plastics, v, 1 
Plastics-processing industry, 3 
Plastometer, 18 
Poiseuille 

equation, 32 
flow, 70, 87, 152, 164 

Polariszbility, 116 
Polarity 

influence of in, 104 
Poly-p-benzamide, 105 
Polyacrylamide, 62, 114, 114, 137 
1175 gade, 94 
aqueous solution viscosity, 19 
El0 grade, 57, 94 
extensional viscosity of, 92, 93, 95 
maltose syrup/water base, 100 

(see Boger fluid) 
tension thickening, 96 

Polybutadiene 
in dekalin, 91 
mol. weight/viscosity relationship, 102 

Polybutene in polyisobutylene, 61 
Polydimethylsiloxane, 102 
Polydispersity, influence of, 122 
Polyethylene oxide 

open-syphon effect with, 94 
extensional viscosity of 
WSR 301 grade, 95 

Polyethylene terephthalate 
glass transition temperature of, 101 
melt-processing temperature of, 101 
melting point of, 101 

Polyhedral particles, 135 
Polyisobutylene in 

dekalin, 58, 60, 72 
kerosene/polybutene, 59, 100 
polybutene, 61 

Polymer blends 
influence on viscosity, 104 

Polymer extrudate, 163 
Polymer flooding, 78, 114 

(see enhanced oil recovery) 
Polymer gels, 104 
Polymer liquid crystal 

Sisko model use of, 22 
Polymer melts, 57, 68, 97 

carbon black in, 104 
characteristic time of, 6 
handling of, 13 
power-law parameters of, 22 
viscosity of, 11 

Polymer processing, 6, 111 
importance of extensional flow in, 77 

Polymer rheology, 1 
effect of molecular weight on, 102 
effect of temperature on, 101 
from molecular theories, 106 

Polymer solutions, 16, 57, 97, 155 
dilute, 75 

Polymer structure (coiled chains), 25 
Polymeric liquid crystals, 104 
Polymers 

adsodd  onto panicle surfaces, 132 
as thickeners, 136 
crystallisation and hezing, 101 
engine lubricants, 113 
extrusion of, 13 
fracturing, 101 
glass forming, 101 
liquid crystal formation, 105 
solubility of, 25 

Polymethylmethacrylate (PMMA), 102 
Polypropyltne 

copolymer, 57 
isotactic 

glass transition temperature of, 101 
melting point of, 101 
melt-pk&ssing temperature of, 101 

Polysacchaxide-type polymers, 114 
Polystyrene, 90 

a noncrystallising polymer, 101 
benzene, 104 
extensional viscosity of, 90 
glass transition temperature of, 101 
melt-processing temperature of, 101 
modes of motion in chains of, 103 
mol. weight/viscosity relationship, 102 

Pores of sedimentary rock, 113 
Positive dissipation principle, 145 



Postextrusion swelling, 62, 161 
(see die swell) 

Powders, sedimentation in liquids, 13 
Power-law 

index, 129 
definition of, 19 

liquids in pipe-flow, 324  
model, 19, 20, 21, 23, 28, 58, 112, 

164 
shear-thinning region, 115 

Power-law parameters of 
ball-point pen ink, 22 
fabric conditioner, 22 
polymer melts, 22 
synovial fluid, 22 

Pressure 
concept of, 7 
dependence of viscosity on, 14 
measurement with 

flush-mounted transducers, 68 
Prevention of crystallisation by 

chain branching, 102 
rapid cooling, 102 

Principle of 
fading memory, 145 
material objectivity, 143 

Printing inks, v, 13, 115, 133 
Process control, 9 

modelling, 112 
time, 161 

Processing of glass, 13 
PS.. 90 

extensional viscosity of, 90 
(see polystyrene) 

Pseudo-crystaUlanice, 117 
Pseudoplasticity, 16, 164 
(see shear thinning) 

Pumping, shear rate during, 13 
Pure shear, 77 

(see planar extensional flow) 
Putty, bouncing, 5 
PVC organosol, 134 

Quality control, 9 
use of viscoelastic parameters in, 37 

Quartz grain suspensions, 125 
QWERTY keyboard, 5 

extensional viscosity from, 89 
Random 

close packing, 120 
disordered state, 117 

Rapid cooling 
prevention of crystalisation by, 102 

Rate of energy dissipation, 14 
Rate-of-shear, 165 
Rate-of-strain tensor, 143 
Recoverable shear, 58 
Reduced 

shear rate, 111 
variables method, 109 
viscosity, I62, 165 

Reentrant comers, 151, 157 
Reiner-Rivlin fluid, 55, 149 
Relative 

deformation, 165 
viscosity, 125, 165, 169 

Relaxation 
function, 45, 50, 51 
spectmm, 43, 45, 50, 51 
tests at constant strain, 51 
time, 41, 45, 51, 52, 109, 161, 165, 

169 
Reptation (models), 108, 109 
Repulsion, 116, 131 

entropic, 137 
Rest structures in suspensions, 117 
Retardation time, 40, 154, 165 
Retarded-motion expansion, 151 
Reynolds number, 165 
Rheogoniometer, 98, 165 

oscillatory methods, 52 
Weissenberg, 59 

Rheograms, 165 
Rheological behaviour, classification of, 5 
Rheological equations of state, 10, 141, 

48, 160, 165 
formulation of, 144 

Rheology, 113, 165 
continuum, 160 
definition, v 
etymology, 1 
mathematical description of, 5 
phenomenological, 160 
suspensions, 115 
theoretical, 14 1 

Rabinowitsch correction, pipe-flow in, 32 time-scale in, 5 
Racernic poly~)'-benzyl glutamate, 22 Rheomcter, 165 
Radial distribution function, 125 accuracy of measurement, 59 
Radial filament elongation capillary, 87 



concentric cylinder, 52 
cone-and-plate, 52, 65 
constant stress, 27, 52 
lubricated-converging-flow, 86 
lubricated-die, 86 
Maxwell orthogonal, 54 
parallel sliding plate, 65 
Rheometrics, 27 
spin-line, 85, 98 
torsional balance, 32 
Weissenberg, 27 

Rheometry, 9 
edge effects in, 68 
inertia in, 51 
measurement accuracy in, 68 
role of, 9 
speed of sound in, 51 
surface tension in, 68 

Rhtwpexy, 159, 165 
Ribbons, 119 
Rigidity modulus, 2, 4, 38, 166 
Rising-bubble viscometer, 26 
Rivlin-Ericksen 

fluid, 150 
tensors, 148, 150 

Rod-clirnbing effect, 60, 67 
Rods, suspensions of, 112, 124 
Roll-wave motion in turbulent flow, 79 
Rotameter used as a viscometer, 35 
Rotating bodies, flow caused by, 156 
Rotational viscometers, 26 
Rouse-Zimm model, 106. 107 
Rubber vulcanisation, 98 
Rubbing, shear rate during, 13 

Sample changing in viscometers, 31 
Scale-up of pipe-flow, 33 
Second normal stress difference, 55-59, 

70, 155 
coefficient, 108 

Second (upper) Newtonian region, 16, 99 
Second order model, 151, 154 

extensional viscosity from, 81 
simple fluid version, 71 
viscoelasticity from, 152 

Secondary flow, 31, 166, 168 
mistaken for shear-thickening, 31 

Secondary recovery process, 113 
Sedimentation of powders, 13, 127, 137 
Self-diffusion, 132 
Semi-crystalline solid polymers 

shear modulus of, 101 

Semi-rigid polymer 
extensional viscosity of, 98 

Separation processes, 137 
Servo-mechanism for gap-maintenance, 67 
Shark-skin, 113 
Shear, 166 

compliance, 159, 166 
defition, 2 
fracture, 68 
modulus, 50, 160, 166 

of metals, 101 
of solid polymers, 101 
of unhardened rubber, 101 

oscillatory, 153 
simple, 153, 155, 160 
small-amplitude oscillatory, 151 
strain, 166 
stress, 166 

in pipe-flow, 32 
viscosity, 159, 166 

Shear rate, 166 
critical, 128 
definition, 2 

Shear rate during 
atomisation, 13 
blood flow, 13 
brushing, 13 
chewing, 13 
extrusion, 13 
lubrication, 13 
mixing, 13 
painting, 13 
paper coating, 13 
pipe flow, 13 
pumping, 13 
rubbing, 13 
spraying, 13 
stirring, 13 
swallowing, 13 

Shear thinning, 4, 16, 119, 164, 166 
Shear thickening, 16, 23, 128, 129, 130, 

131, 138, 161, 166 
dilute polymer solutions in, 99 
heat-transfer 

in pipe-flow, 34 
onset of, 130 
region, 129 
secondary flow mistaken as, 31 
surfactant solution for, 23 

Shift factors, 110, 111 
SI units, viscosity, 2, 12 
Silica dispersions, 117 



Silicone, 5 
Simple 

cubic packing, 120 
fluids, 148, 151 

hypothesis, 150 
hemetrical flows, 141, 152 

&ear, 160, 166 
Sisko model, 19, 20, 22 

carbopol solution for, 22 
fabric softener for, 22 
polymer liquid crystal for, 22 
yogurt for, 22 

Slit flow, 14, 35, 70 
Slow flow, 45, 56, 71, 150, 156 
Slowly varying, 151 
Slumping of grease, 20 
Small-amplitude oscillatory flow, 9, 46, 

71, 99, 107, 134, 151 
Smoothness assumptions, 151 
Soap crystals, 118 
Soft solids, 105, 166 
Solid 

definition of, 6 
elastic, 159 
Hookean elastic, 5 
plastic-rigid, 5 

Solid-paxticle dispersions, 135 
Solid-like 

behaviwr, 6 
liquids, 4 
materials 

specimen preparation, 52 
testing of, 53 

Solids, 4 
Hookean elastic, 3 
liquid-like, 4 

Solubility of polymers, 25 
Solvent/polymer interactions, 104 
Specific viscosity, 165, 167 
Specimen preparation of 

solid-like materials, 52 
Spectrum of relaxation frequencies, 45 
Speed of sound in heometry, 51 
Spheres, 124, 125 
Spin-line technique (rheometer), 85, 86, 

91-94, 98 
Spinnability, 77, 167 
spinning, 112 
Spraying, shear rate during, 13 
Spring-dashpot models, 42 

~an0niCd f0rms of, 44 
Springs in mechanical models in, 40 

Squeeze film flow, lubricated, 76 
(see biaxial flow) 

Stabilisers for 
dispersions, 137 
emulsions, 137 

Stability analyses (linear), 156 
stagnation-point devices 

extensional viscosity from, 89 
Standardised liquids (Newtonian), 25 
Starch suspensions, 129 
Startup of shear flow, 108 
Statistical mechanics, 6 
Steadiness 

Eulerian definition of, 54 
Lagrangian definition of, 54 

Steady flow, 167 
Eulerian, 85 
extensional, 168 
shear, 149, 150, 153, 155, 169 

Steel (modulus), 5 
Steric repulsion, 117 
Stirring, shear ate during, 13 
Stokes' 

drag law, 20 
equation, 106 

Stone-Weierstrass theorem, 150 
Storage 

compliance, 159, 167 
modulus, 47, 160, 167 

Stored energy, 167 
Strain 

definition of, 2, 167 
energy, 161, 167 
hardening, 89 

Stress 
relaxation, I67 
overshoot 

at startup of shear flow, 108 
tensor, 138, 152, 162, 165, 167 

extra, 143 
trace of the, 139 

Stretching of thin sheets, 76 
(see biaxial flow) 

String-of-pearls s ~ ~ t u r e ,  117 
Stringiness, 114 
Strings of molecules, 139 
Structural engineering, 5 
Suction &vice, spin-line technique in, 86 
Supctposition principle, 38, 45 
(see Boltzmann's principle) 

Surface tension 
hemetry in, 68 



and levelling, 13 
Surfactant solution 

shear-thickening behaviour, 23 
Suspensions, 75 

asymmetric particles, 124 
fine particles, 114 
flocculated, 133 
nowsettling, 20 
slender particles 

(extensional viscosity), 82 
solid elastic spheres of, 42 
starch, 129 
sub-micron, 126 
truncated cones for, 31 
very dilute, 152 
viscometers for, 28 
viscosity of, 17, 116 

Swallowing, shear rate during, 13 
Swelling, postextrusion, 161 

(see die swell) 
Symmetric 

contravariant tensor, 146 
covariant tensor, 146 

Synovial fluid 
power-law parameters of, 22 

Synthetic latex, Bingham plot of, 20, 21 
Synthetic-fibre industry, 3 

Taylor 
number, 168 
vortices, 168 

in concentric-cylinders 29 
Taylor-series expansion, 150 
Temperature dependence of viscosity, 4. 

12 
lubricating oils, 14 
colloid interactions, 25 

Temporary viscosity loss, 16 
Tension, 168 

along streamlines, 59 
thickening, 76-78, 81, 91, 94, 168 
thinning, 76, 77, 78, 91, 93, 94, 168 

Tensor, 38, 146 
analysis, 7, 143 
valued functional, 148 

Teaiary mixtures, 122 
Tertiary 

or enhanced oil recovery (EOR), 114 
Theology, misprint for rheology, 5 
Theoretical rheology, 141 
Thermodynamic 

equilibrium, 117 

origin of normal stresses, 57 
principles, 145 

Thickening sauces and soups, 114, 136 
Thixotropic material in pipe flow, 25 
Thixotropy, 4, 24, 25, 142, 168 

negative, 159 
Time-dependent 

frame, 143 
materials, 142 

Time- scale 
everyday, 4 
rheology, 5 

~ime-temperature superposition, 109, 110, 
168 

Titanium dioxide, 125 
Toilet bleach, drainage, 13 
Toothpastes, 4, 114, 137 
Torsional 

balance rheometer, 32 
flow, 31, 65, 68 
(see parallel plate geometry) 

Trace of the stress tensor, 139 
Transformation rules, 146 
Transient junctions, 108 
Tribology, 38 
Trimodal suspensions, 123 
Triple-jet technique for 

extensional viscosity, 89 
Trouton 

behaviour, 89 
ratio, 80, 81, 94, 95, 99, 100, 168 
viscosity, 168 

Truncated cones for suspensions, 31 
Turbulence, 162, 168 

drag reduction in, 79 
roll-wave motion in, 79 
viscometers in, 29 
vortex stretching in, 79 

Two-dimensional 
layering, 128, 132 
structures, 125 

Two-phase liquids 
temperature effects, 25 

Uniaxial extensional flow, 16 
Unvulcanized rubber, 110 
Upper Newtonian plateau, 16, 99, 115 

(see second Newtonian region) 
Upperconvected Maxwell model, 107, 

154 
Van der Wads attraction, 117 
Variant suffices, 143 



Velocity 
gradient, 168 
profile in pipe-flow, 34 

Very high frequency measurements, 103 
viscoelastic(ity), 37, 46, 51, 107, 113, 

136, 149, 161, 163 
definition of, 6 
due to intramolecular forces, 106 
linear, 4, 46, 50, 51, 55, 107, 152 
second-order, 152 

Viscometers, 169 
Brookkield, 26 
calibration, 25 
capillary, 32 

Omstaner type, 18 
concentric cylinder, 14 

narrow-gap, 27 
on-line version of, 35 
wide-gap, 28 

cone-and-plate, 14, 30 
Ferranti-Shirley , 18 

constant stress, 17 
Deer type, 18 

Contraves, 27 
convenience, 26 
definition of, 12 
end effects, 28 
falling-ball, Glen Creston, 26 
Ferranti-Shirley, 27 
for suspensions, 28 
Fordcup, 26 
gap setting errors, 31 
Haake, 18 
heat transfer in, 14 
industrial shop floor, 26 
Lodge stressmeter used as, 35 
Mooney system, 28 
on-line, 35 
parallel-plate, 31 
rising-bubble, 26 
robustness, 26 
rotameters used as, 35 
rotational, 26 
sample changing in, 31 
secondary flows in, 31 
slit, 35 
torsional parallel-plate, 3 1 
turbulence in, 29 
viscous heating in, 29 

Viscometric flows, 152, 169 
Viscosity, 169 

apparent, 159, 166 

coefficient of, 161 
colloidal contribution to, 131 
complex, 48, 72 
dynamic, 38, 48, 53, 71, 160 

Cox-Men rule use in, 99 
elongational, 162 
(see extensional viscosity) 

extensional, 161 
biaxial, 77 
planar, 77 
uniaxial, 75 

International standard of, 25 
intrinsic, 103 
kinematic, 161 
measuring accuracy of, 13 
pressure dependence of, 14 
ratio, 165, 169 
reduced, 162 
relative, 169 
shear, 11 
SI  units, 12 
specific, 165 
temperature dependence of, 12 
Trouton, 162 

Viscosity of 
air, 11 
bitumen, 11 
glass, 11 
glycerol, 11 
golden syrup, 11 
liquid honey, 11 
polymer melts, 11 
suspensions, 17 
water, 11 

Viscosity-Index (or VI) improvers, 113 
Viscous 

heating in viscometers, 14, 29, 38, 68 
losses in pipe flow, 33 

Voigt model, 39, 162, 169 
(see Kelvin model) 

vortex 
enhancement, 88 
stretching in turbulent flow, 79 

Vulcanisation of mbber, 98 

Wall depletion effect, 127, 128 
Water, 2 

characteristic time of, 5 
viscosity, 11 

as International standard, 25 
pressure dependence of, 14 
temperature sensitivity, 25 



Waterclarification, 137 
WaterJoil interface, 113 
Wave-propagation methods, 53 
Weather maps, 7 
Weber's silk threads, 3 
Weighing errors, 127 
Weissenberg 

hypothesis, 59 
number, 169 

definition of, 63 
rheogoniometer, 27 

origin of, 59 
rodclimbing effect, 60, 67, 169 

White-Metzner 
model, 154, 155 
tensors, 148 

Williams-Landel-Ferry 
(WLF') equation, 111 

Wire coating, 64 
Wobbliness, 114 

Xanthan gum, 94, 95, 114 
aqueous dispersion flow curve, 19 
extensional viscosity of, 93 

Yield stress, 5, 16, 17, 20, 21, 115, 
133, 159, 164, 169 

Yield smss of 
gels, 17 
ice cream, 17 
lubricating greases, 17 
margarine, 17 
pastes, 17 

Yogurt, Sidco model use of, 22 
Young's modulus, 169 

Zero-shear viscosity, 16 
effect of molecular weight on, 103 




