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PREFACE

Rheology, defined as the science of deformation and flow, is now recognised as an
important field of scientific study. A knowledge of the subject is essential for
scientists employed in many industries, including those involving plastics, paints,
printing inks, detergents, ails, etc. Rheology is also a respectable scientific discipline
in its own right and may be studied by academics for their own esoteric reasons,
with no major industrial motivation or input whatsoever.

The growing awareness of the importance of rheology has spawned a plethora of
books on the subject, many of them o the highest class. It is therefore necessary at
the outset to justify the need for yet another book.

Rheology is by common consent a difficult subject, and some of the necessary
theoretical components are often viewed as being of prohibitive complexity by
scientists without a strong mathematical background. There are also the difficuities
inherent in any multidisciplinary science, like rheology, for those with a specific
training e.g. in chemistry. Therefore, newcomersto the field are sometimes discour-
aged and for them the existing texts on the subject, some of which are outstanding,
ared limited assistance on account of their depth of detail and highly mathematical
nature.

For thesereasons, it isour considered judgment after many years of experiencein
industry and academia, that there still exists a need for a modern introductory text
on the subject; one which will provide an overview and at the same time ease
readers into the necessary complexitiesd the field, pointing them at the same time
to the more detailed texts on specific aspects of the subject.

In keeping with our overall objective, we have purposdly (and with some
difficulty) minimised the mathematical content of the earlier chapters and relegated
the highly mathematical chapter on Theoretical Rheology to the end of the book. A
glossary and bibliography are included.

A major component of the anticipated readership will therefore be made up of
newcomers to the field, with at least a first degree or the equivalent in some branch
of science or engineering (mathematics, physics, chemistry, chemical or mechanical
engineering, materials science). For such, the present book can be viewed as an
important (first) stepping stone on the journey towards a detailed appreciation of
the subject with Chapters 1-5 covering foundational aspects of the subject and
Chapters 6-8 more specialized topics. We certainly do not see ourselvesin competi-
tion with existing books on rheology, and if thisis not the impression gained on
reading the present book we have failed in our purpose. We shall judge the success
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vi Preface

or otherwise of our venture by the response of newcomers to the field, especially
those without a strong mathematical background. We shall not be unduly disturbed
if long-standing rheologists find the book superficial, although we shall be deeply
concerned if it is concluded that the book is unsound.

We express our sincere thanks to all our colleagues and friends who read earlier
drafts of various parts of the text and made useful suggestions for improvement.

Mr Robin Evans is to be thanked for his assistance in preparing the figures and
Mrs Pat Evans for her tireless assistance in typing the final manuscript.

H.A. Barnes
J.F. Hutton
K. Walters
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CHAPTER 1

INTRODUCTION

1.1 What is rheology?

The term 'Rheology’ * wasinvented by Professor Bingham of Lafayette College,
Easton, PA, on the advice of a colleague, the Professor of Classics. It means the
study o the deformation and flow of matter. This definition was accepted when the
American Society of Rheology was founded in 1929. That first meeting heard papers
on the properties and behaviour of such widely differing materials as asphalt,
lubricants, paints, plastics and rubber, which gives some idea of the scope of the
subject and aso the numerous scientific disciplines which are likely to be involved.
Nowadays, the scope is even wider. Significant advances have been made in
biorheology, in polymer rheology and in suspension rheology. There has also been a
significant appreciation of the importance of rheology in the chemical processing
industries. Opportunities no doubt exist for more extensive applications of rheology
in the biotechnological industries. There are now national Societies of Rheology in
many countries. The British Society of Rheology, for example, has over 600
members made up of scientists from widely differing backgrounds, including
mathematics, physics, engineering and physical chemistry. In many ways, rheology
has come of age.

1.2 Higtorical perspective

In 1678, Robert Hooke developed his" True Theory of Elasticity” . He proposed
that ""the power of any spring is in the same proportion with the tension thereof",
i.e. if you double the tension you double the extension. This forms the basic premise
behind the theory of classical (infinitesimal-strain) elasticity.

At the other end of the spectrum, Isaac Newton gave attention to liquids and in
the" Principia” published in 1687 there appears the following hypothesis associated
with the steady simple shearing flow shown in Fig. 1.1: "' The resistance which arises
from the lack of slipperiness of the parts of the liquid, other things being equal, is
proportional to the velocity with which the parts of the liquid are separated from
one another.

* Definitions of terms in single quotation marks are included in the Glossary.

1



2 Introduction [Chap. 1
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Fig. 1.1 Showing two parallel planes, each of area A, at y=0 and y =d, the intervening space being
filled with sheared liquid. The upper plane moves with relative velocity U and the lengthsof the arrows
between the planesare proportional to the local velocity v, in the liquid.

Thislack o dipperinessis what we now call 'viscosity'. It is synonymous with
"internal friction™ and isa measure of "'resistance to flow". The force per unit area
required to produce the motion is F/A and is denoted by a and is proportional to
the'velocity gradient' (or 'shear rate€') U/d, i.e. if you double the force you double the
velocity gradient. The constant of proportionality n is caled the coefficient of
viscosity, i.e.

e=nqU/d. (1.1)

(It is usual to write y for the shear rate U/d; see the Glossary.)

Glycerine and water are common liquids that obey Newton's postulate. For
glycerine, the viscosity in Sl unitsis of the order of 1 Pa.s, whereas the viscosity of
water is about 1 mPa.s, i.e. one thousand times less viscous.

Now although Newton introduced his ideas in 1687, it was not until the
nineteenth century that Navier and Stokes independently developed a consistent
three-dimensional theory for what is now called a Newtonian viscous liquid. The
governing equations for such a fluid are called the Navier—Stokes equations.

For the smple shear illustrated in Fig. 1.1, a'shear stress a resultsin 'flow'. In
the case of a Newtonian liquid, the flow persists as long as the stress is applied. In
contrast, for a Hookean solid, a shear stress a applied to the surface y = d resultsin
an instantaneous deformation as shown in Fig. 1.2. Once the deformed state is
reached thereis no further movement, but the deformed state persists as long as the
stressis applied.

The angle y is caled the'strain' and the relevant 'constitutive equation' is

a=Gy, (1.2)
where G is referred to as the 'rigidity modulus.

y y

7

A 8 A (-}
X I’ x

Fig. 1.2 Theresult of the application of a shear stress ¢ to a block of Hookean solid (shown in section).
On the application of the stress the material section ABCD is deformed and becomesA'B'C'D'.



121 Historical perspective 3

Three hundred years ago everything may have appeared deceptively simple to
Hooke and Newton, and indeed for two centuries everyone was satisfied with
Hooke's Law for solids and Newton's Law for liquids. In the case of liquids,
Newton's law was known to work well for some common liquids and people
probably assumed that it was a universal law like his more famous laws about
gravitation and motion. It was in the nineteenth century that scientists began to
have doubts (see the review article by Markovitz (1968) for fuller details). In 1835,
Wilhelm Weber carried out experiments on silk threads and found out that they
were not perfectly elastic. "' A longitudinal load™, he wrote, "' produced an immediate
extension. This was followed by a further lengthening with time. On removal of the
load an immediate contraction took place, followed by a gradual further decrease in
length until the original length was reached”. Here we have a solid-like material,
whose behaviour cannot be described by Hooke's law alone. There are elements of
flow in the described deformation pattern, which are clearly associated more with a
liquid-like response. We shall later introduce the term ‘ viscoelasticity' to describe
such behaviour.

So far as fluid-like materials are concerned, an influential contribution came in
1867 from a paper entitled " On the dynamical theory of gases' which appeared in
the " Encyclopaedia Britannica”. The author was James Clerk Maxwell. The paper
proposed a mathematical model for a fluid possessing some elastic properties (see
53.3).

The definition of rheology already given would alow a study of the behaviour of
al matter, including the classical extremes of Hookean elastic solids and Newtonian
viscous liquids. However, these classical extremes are invariably viewed as being
outside the scope of rheology. So, for example, Newtonian fluid mechanics based on
the Navier—Stokes equations is not regarded as a branch of rheology and neither is
classical eladticity theory. The over-riding concern is therefore with materials be-
tween these classical extremes, like Weber's silk threads and Maxwell's elastic fluids.

Returning to the historical perspective, we remark that the early decades of the
twentieth century saw only the occasional study of rheological interest and, in
genera terms, one has to wait until the second World War to see rheology emerging
as a force to be reckoned with. Materials used in flamethrowers were found to be
viscoelastic and thisfact generated its fair share of original research during the War.
Since that time, interest in the subject has mushroomed, with the emergence of the
synthetic-fibre and plastics-processing industries, to say nothing of the appearance
of liquid detergents, multigrade oils, non-drip paints and contact adhesives. There
have been important developments in the pharmaceutical and food industries and
modem medical research involves an important component of biorheology. The
manufacture of materials by the biotechnological route requiresa good understand-
ing of the rheology involved. All these developments and materials help to illustrate
the substantial relevance of rheology to life in the second haf of the twentieth
century.
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1.3 The importance of non-linearity

So far we have considered elastic behaviour and viscous behaviour in termsof the
laws of Hooke and Newton. These are linear laws, which assume direct propor-
tionality between stress and strain, or strain rate, whatever the stress. Further, by
implication, the viscoelastic behaviour so far considered is aso linear. Within this
linear framework, a wide range of rheological behaviour can be accommodated.
However, this framework is very restrictive. The range of stress over which materials
behave linearly is invariably limited, and the limit can be quite low. In other words,
material properties such as rigidity modulus and viscosity can change with the
applied stress, and the stress need not be high. The change can occur either
instantaneously or over a long period of time, and it can appear as either an increase
or a decrease of the material parameter.

A common example of non-linearity is known as 'shear-thinning' (cf. §2.3.2).
This is a reduction of the viscosity with increasing shear rate in steady flow. The
toothpaste which sits apparently unmoving on the bristles of the toothbrush iseasily
squeezed from the toothpaste tube—a familiar example of shear-thinning. The
viscosity changes occur amost instantaneously in toothpaste. For an example of
shear-thinning which does not occur instantaneously we look to non-drip paint. To
the observer equipped with no more than a paintbrush the sow recovery of viscosity
is particularly noticeable. The specia term for time-dependent shear-thinning fol-
lowed by recovery is 'thixotropy', and non-drip paint can be described as thixo-
tropic. Shear-thinning is just one manifestation of non-linear behaviour, many
others could be cited, and we shall see during the course of this book that it is
difficult to make much headway in the understanding of rheology without an
appreciation of the general importance of non-linearity.

1.4 Solids and liquids

It should now be clear that the concepts of elasticity and viscosity need to be
qualified since real materials can be made to display either property or a combina-
tion of both simultaneously. Which property dominates, and what the values of the
parameters are, depend on the stress and the duration of application of the stress.

The reader will now ask what effect these ideas will have on the even more
primitive concepts of solids and liquids. The answer is that in a detailed discussion
of real materias these too will need to be qualified. When we look around at home,
in the laboratory, or on the factory floor, we recognise solids or liquids by their
response to low stresses, usualy determined by gravitational forces, and over a
human, everyday time-scale, usually no more than a few minutes or less than a few
seconds. However, if we apply a very wide range of stress over a very wide spectrum
o time, or frequency, using rheological apparatus, we are able to observe liquid-like
properties in solids and solid-like properties in liquids. It follows therefore that
difficulties can, and do, arise when an attempt is made to label a given material as a
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solid or a liquid. In fact, we can go further and point to inadequacies even when
qualifying terms are used. For example, the term plastic-rigid solid used in
structural engineering to denote a material which is rigid (inelastic) below a 'yield
stress' and yielding indefinitely above this stress, is a good approximation for a
structural component of a steel bridge but it is nevertheless till limited as a
description for stedl. It is much more fruitful to classify rheological behaviour. Then
it will be possible to include a given material in more than one of these classifica-
tions depending on the experimental conditions.

A great advantage of this procedure is that it alows for the mathematical
description of rheology as the mathematics of a set of behaviours rather than of a
set of materials. The mathematics then leads to the proper definition of rheological
parameters and therefore to their proper measurement (see aso §3.1).

To illustrate these ideas, let us take as an example, the silicone material that is
nicknamed "' Bouncing Putty'. It is very viscous but it will eventually find its own
level when placed in a container—given sufficient time. However, as its name
suggests, a ball of it will also bounce when dropped on thefloor. It is not difficult to
conclude that in a dow flow process, occurring over a long time scale, the putty
behaves like a liquid—it finds its own level lowly. Also when it is extended dowly
it shows ductile fracture—a liquid characteristic. However, when the putty is
extended quickly, i.e. on a shorter time scale, it shows brittle fracture—a solid
characteristic. Under the severe and sudden deformation experienced as the putty
strikes the ground, it bounces— another solid characteristic. Thus, a given material
can behave like a solid or a liquid depending on the time scale of the deformation
process.

The scaling of time in rheology is achieved by means of the 'Deborah number’,
which was defined by Professor Marcus Reiner, and may be introduced as follows.

Anyone with a knowledge of the QWERTY keyboard will know that the letter
"R" and the letter " T" are next to each other. One consequence of thisis that any
book on rheology has at least one incorrect reference to theology. (Hopefully, the
present book is an exception!). However, this is not to say that there is no
connection between the two. In the fifth chapter of the book of Judgesin the Old
Testament, Deborah is reported to have declared, " The mountains flowed before
the Lord...”. On the basis of this reference, Professor Reiner, one of the founders
of the modern science of rheology, called his dimensionless group the Deborah
number D,. The idea is that everything flows if you wait long enough, even the
mountains!

D,=+1/T, (1.3)

where T is a characteristic time of the deformation process being observed and r is
a characteristic time of the material. The time r is infinite for a Hookean elastic
solid and zero for a Newtonian viscousliquid. In fact, for water in theliquid state =
istypically 10~ s whilst for lubricating oils as they pass through the high pressures
encountered between contacting pairs of gear teeth 7z can be of the order of 107% s
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and for polymer melts at the temperatures used in plastics processing + may be as
high as a few seconds. There are therefore situations in which these liquids depart
from purely viscous behaviour and also show elastic properties.

High Deborah numbers correspond to solid-like behaviour and low Deborah
numbers to liquid-like behaviour. A material can therefore appear solid-like either
because it has a very long characteristic time or because the deformation processwe
are using to study it is very fast. Thus, even mobile liquids with low characteristic
times can behave like elastic solids in a very fast deformation process. This
sometimes happens when lubricating oils pass through gears.

Notwithstanding our stated decision to concentrate on material behaviour, it may
still be helpful to attempt definitions of precisely what we mean by solid and liquid,
since we do have recourse to refer to such expressionsin this book. Accordingly, we
definea solid as a material that will not continuously change its shape when subjected
to a given stress, i.e. for a given stress there will be a fixed final deformation, which
may or may not be reached instantaneously on application o the stress. We define a
liguid as a material that will continuously change its shape (i.e. will flow) when
subjected to a given stress, irrespective of how small that stress may be.

The term ‘ viscodasticity' is used to describe behaviour which falls between the
classical extremes of Hookean elastic responseand Newtonian viscous behaviour. In
terms of ideal material response, a solid material with viscoelagticity is invariably
caled a 'viscoelastic solid' in the literature. In the case of liquids, there is more
ambiguity so far as terminology is concerned. The terms 'viscoelastic liquid',
‘dastico-viscous liquid', 'éastic liquid' are all used to describe a liquid showing
viscoelagtic properties. In recent years, the term 'memory fluid' has also been used
in this connection. In this book, we shall frequently use the simple term elastic
liquid.

Liquids whose behaviour cannot be described on the basis of the Navier—Stokes
equations are caled 'non-Newtonian liquids. Such liquids may or may not possess
viscoelastic properties. This means that al viscoelastic liquids are non-Newtonian,
but the converseis not true: not all non-Newtonian liquids are viscoelastic.

1.5 Rheology is a difficult subject

By common consent, rheology is a difficult subject. This is certainly the usua
perception of the newcomer to the field. Various reasons may be put forward to
explain this view. For example, the subject is interdisciplinary and most scientists
and engineershave to move away from a possibly restricted expertiseand develop a
broader scientific approach. The theoretician with a background in continuum
mechanics heedsto develop an appreciation of certain aspects of physical chemistry,
statistical mechanics and other disciplines related to microrheological studies to
fully appreciate the breadth of present-day rheological knowledge. Even more
daunting, perhaps, is the need for non-mathematicians to come to terms with at
least some aspects of non-trivial mathematics. A cursory glance at most text books
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on rheology would soon convince the uninitiated o this. Admittedly, the apparent
need of a working knowledge of such subjects as functional analysis and general
tensor analysis is probably overstated, but there is no doubting the requirement of
some working knowledge of modern mathematics. This book is an introduction to
rheology and our stated aim is to explain any mathematical complication to the
nonspecialist. We have tried to keep to thisaim throughout most of the book (until
Chapter 8, which is written for the more mathematically minded reader).

At this point, we need to justify theintroduction of theindicial notation, whichis
an essential mathematical tool in the development of the subject. The concept o
pressure as a (normal) force per unit area is widely accepted and understood; it is
taken for granted, for example, by TV weather forecasterswho are happy to display
isobars on their weather maps. Pressure is viewed in these contexts as a scaar
quantity, but the move to a more sophisticated (tensor) framework is necessary
when viscosity and other rheological concepts are introduced.

We consider asmall plane surface of area As drawn in a deforming medium (Fig.
1.3).

Let n,, n, and n, represent the components of the unit normal vector to the
surfacein the x, y, z directions, respectively. These define the orientation of As in
space. The normal points in the direction of the +ve side of the surface. We say
that the material on the *ve side of the surface exerts a force with components
F{MAs, F™ As, F™ As on the materia on the —ve side, it being implicitly
assumed that the area As is small enough for the 'stress’ components F™, F™,
E™ to be regarded as constant over the small surface As. A more convenient
notation is to replace these components by the stress components o, ,, o,,, o,,, the
first index referring to the orientation of the plane surface and the second to the
direction of the stress. Our sign convention, which is universally accepted, except by
Bird et a. (1987(a) and (b)), is that a positive a,, (and similarly 3 and a) isa
tension. Components a, ¢, and a, are termed 'normal stresses and a, a, €tC.
are called 'shear stresses. It may be formaly shown that o,,=o0,,, a =a and
a, =o,, (see, for example Schowalter 1978, p. 44).

Figure 1.4 may be helpful to the newcomer to continuum mechanics to explain

fne.ny.nz)
x y’ z (,_;In)lF;lnl‘len))

/
z /
’ +ve side

‘ -ve side

X

Fig. 1.3 Themutually perpendicular axesOx, Oy, Oz are used to define the position and orientation of the
small area As and the forceon it.
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Fig. 1.4 The components of stresson the plane surfaces of a volume element of a deforming medium.

the relevance of theindicial notation. The figure contains a schematic representation
of the stress components on the plane surfaces of a small volume which forms part
of a general continuum. The stresses shown are those acting on the small volume
due to the surrounding material.

The need for an indicial notation is immediately illustrated by a more detailed
consideration of the steady simple-shear flow associated with Newton's postulate
(Fig. 1.1), which we can conveniently express in the mathematical form:

v, =vy, v,=0v=0, (1.4)

where v,, v, v, are the velocity componentsin the x, y and z directions, respec-
tively, and v is the (constant) shear rate. In the case of a Newtonian liquid, the
stress distribution for such a flow can be written in the form

oyx = Tn./’ oxz = oyz = 0’ oxx - oyy = 0’ oyy - ozz = O’ (15)
and here there would be little purpose in considering anything other than the shear
stress o,, which we wrote as a in egn. (1.1). Note that it is usual to work in terms of
normal stress differences rather than the normal stresses themselves, since the latter
are arbitrary to the extent of an added isotropic pressure in the case of incom-
pressible liquids, and we would need to replace (1.5) by

ny="ﬂ'/a ox2=0y2=0, } (1 6)
O%x=-P, %,=-p, a =-p, .

where p isan arbitrary isotropic pressure. Thereis clearly merit in using (1.5) rather
than (1.6) since the need to introduce p is avoided (see also Dealy 1982, p. 8).

For elastic liquids, we shall see in later chapters that the stress distribution is
more complicated, requiring us to modify (1.5) in the following manner:
o, = , o.,=0,_ =0,
<= 1(7)7 s = %: 0 ' (1.7)
Oux — 0,y = N\(Y)’ 0,,—0,,= N2(Y)>
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where it is now necessary to alow the viscosity to vary with shear rate, written
mathematically as the function #(¥), and to alow the normal stresses to be
non-zero and also functions of y. Here the so caled normal stress differences N,
and N, are of significant importance and it is difficult to see how they could be
conveniently introduced without an indicial notation *. Such a notation is therefore
not an optional extra for mathematically-minded researchers but an absolute
necessity. Having said that, we console non-mathematical readers with the promise
that this represents the only major mathematical difficulty we shall meet until we
tackle the notoriously difficult subject of constitutive equations in Chapter 8.

1.6 Componentsof rheological research

Rheology is studied by both university researchers and industrialists. The former
may have esoteric as well as practical reasons for doing so, but the industrialist, for
obvious reasons, is driven by a more pragmatic motivation. But, whatever the
background or motivation, workers in rheology are forced to become conversant
with certain well-defined sub-areas of interest which are detailed below. These are
(i) rheometry; (ii) constitutive equations; (iii) measurement of flow behaviour in
(non-rheometric) complex geometries; (iv) calculation of behaviour in complex
flows.

1.6.1 Rheometry

In ‘'rheometry’, materials are investigated in simple flows like the steady simple-
shear flow already discussed. It is an important component of rheological research.
Small-amplitude oscillatory-shear flow (§3.5) and extensional flow (Chapter 5) are
also important.

The motivation for any rheometrical study is often the hope that observed
behaviour in industrial situations can be correlated with some easily measured
rheometrical function. Rheometry is therefore of potential importance in quality
control and process control. It is also of potential importance in assessing the
usefulness of any proposed constitutive model for the test material, whether thisis
based on molecular or continuum ideas. Indirectly, therefore, rheometry may be
relevant in industrial process modelling. This will be especialy so in future when the
full potential of computational fluid dynamics using large computers is realized
within a rheological context.

A number of detailed texts dealing specificaly with rheometry are available.
These range from the ' How to'" books of Walters (1975) and Whorlow (1980) to the
"Why?" books of Walters (1980) and Dealy (1982). Also, most of the standard texts

* By common convention N, iscalled the first normal stress difference and N, the second normal stress
difference. However, the terms "' primary"* and " secondary'* are also used. In some texts ¥, is defined
asa -a,, wWhilst N, remains as o,,-a.
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on rheology contain a significant element d rheometry, most notably Lodge (1964,
1974), Bird et a. (1987(a) and (b)), Schowater (1978), Tanner (1985) and
Janeschitz-Kriegl (1983). Thislast text also considers'flow birefringence’, which will
not be discussed in detail in the present book (see dso Doi and Edwards 1986, §4.7).

1.6.2 Constitutive equations

Constitutive equations (or rheological equations of state) are equations relating
suitably defined stress and deformation variables. Equation (1.1) is a simple
exampled the relevant constitutive law for the Newtonian viscous liquid.

Constitutive equations may be derived from a microrheological standpoint, where
the molecular structure is taken into account explicitly. For example, the solvent
and polymer moleculesin a polymer solution are seen as distinct entities. In recent
years there have been many significant advancesin rnicrorheological studies.

An dternative approach is to take a continuum (macroscopic) point of view.
Here, there is no direct appeal to the individual microscopic components, and, for
example, a polymer solution is treated as a homogeneous continuum.

The basic discussion in Chapter 8 will be based on the principles of continuum
mechanics. No attempt will be made to give an al-embracing discourse on this
difficult subject, but it is at least hoped to point the interested and suitably
equipped reader in the right direction. Certainly, an attempt will be made to assess
the status o the more popular constitutive models that have appeared in the
literature, whether these arise from microscopic or macroscopic considerations.

1.6.3 Complex flows of dastic liquids

The flows used in rheometry, like the viscometric flow shown in Fig. 1.1, are
generaly regarded as being simple in a rheologica sense. By implication, al other
flows are considered to be complex. Paradoxically, complex flows can sometimes
occur in what appear to be simple geometrical arrangements, e.g. flow into an
abrupt contraction (see §5.4.6). The complexity in the flow usually arises from the
coexistence of shear and extensional components; sometimes with the added com-
plication of inertia. Fortunately, in many cases, complex flows can be dealt with by
using various numerical techniques and computers.

The experimental and theoretical study o the behaviour of elastic liquids in
complex flows is generating a significant amount o research at the present time. In
this book, these areas will not be discussed in detail: they are considered in depth in
recent review articles by Boger (1987) and Walters (1985); and theimportant subject
of the numerical simulation of non-Newtonian flow is covered by the text o
Crochet, Davies and Walters (1984).
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but a function of the shear rate y. We define the function n(y) as the 'shear
viscosity' or simply viscosity, although in the literature it is often referred to as the
‘apparent viscosity' or sometimes as the shear-dependent viscosity. An instrument
designed to measure viscosity is called a ‘ viscometer'. A viscometer is a special type
o 'rheometer' (defined as an instrument for measuring rheological properties)
which is limited to the measurement of viscosity.

The current Sl unit of viscosity is the Pascal-secondwhich is abbreviated to Pa.s.
Formerly, the widely used unit of viscosity in the cgs system was the Poise, which is
smaller than the Pa.s by a factor of 10. Thus, for example, the viscosity of water at
20.2°C is 1 mPa.s (milli-Pascal-second)and was 1 cP (centipoise).

In the following discussion we give a genera indication of the relevance o
viscosity to a number of practical situations, we discuss its measurement using
variousviscometers; we also study its variation with such experimental conditions as
shear rate, time of shearing, temperature and pressure.

2.2 Practical ranges of variables which affect viscosity

The viscosity of real materials can be significantly affected by such variables as
shear rate, temperature, pressure and time of shearing, and it is clearly important
for us to highlight the way viscosity depends on such variables. To facilitate this, we
first give a brief account of viscosity changes observed over practical ranges of
interest of the main variables concerned, before considering in depth the shear rate,
which from the rheological point of view, is the most important influence on
viscosity.

2.2.1 Variation with shear rate

Table 2.2 shows the approximate magnitude of the shear rates encountered in a
number of industrial and everyday situations in which viscosity is important and
therefore needs to be measured. The approximate shear rate involved in any
operation can be estimated by dividing the average velocity of the flowing liquid by
a characteristicdimension o the geometry in whichit isflowing (e.g. the radius of a
tube or the thicknessdf a sheared layer). Aswe see from Table 2.2, such calculations
for a number o important applications give an enormous range, covering 13 orders
o magnitudefrom 10~° to 107 s~!. Viscometers can now be purchased to measure
viscosity over this entire range, but at least three different instruments would be
required for the purpose.

In view of Table 2.2, it is clear that the shear-rate dependence of viscosity is an
important consideration and, from a practical standpoint, it is as wel to have the
particular application firmly in mind before investing in a commercial viscometer.

We shall return to the shear-rate dependence of viscosity in §2.3.

2.2.2 Variation with temperature
So far as temperature is concerned, for most industrial applications involving
agueous systems, interest is confined to 0 to 100° C. Lubricating oils and greases are
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TABLE 22
Shear rates typical of some familiar materials and processes

Situation Typica range of Application
shear rates(s 1)

Sedimentation of

fine powdersin a

suspending liquid 10°¢-10"* Medicines, paints
Levellingdueto

surface tension 1072-107" Paints, printing inks
Draining under gravity 1071210} Painting and coating.

Toilet bleaches
Extruders 10°%-102 Polymers
Chewing and swallowing 10'-10? Foods
Dip coating 10'-102 Paints, confectionary
Mixing and stirring 10'-103 Manufacturing liquids
Pipe flow 10°-10° Pumping. Blood flow
Spraying and brushing 10°-104 Spray-drying, painting,
fuel atomization
Rubbing 104-10° Application of creams and lotions
totheskin

Milling pigments

in fluid bases 103-10° Paints, printing inks
High speed coating 10%-10° Paper
Lubrication 10%-107 Gasoline engines

used from about —50° C to 300°C. Polymer meltsare usually handled in the range
150° C to 300° C, whilst molten glassis processed at a little above 500°C.

Most of the available laboratory viscometers have facilities for testing in the
range —50° C to 150° C using an external temperature controller and a circulating
fluid or an immersion bath. At higher temperatures, air baths are used.

The viscosty of Newtonian liquids decreases with increase in temperature,
approximately according to the Arrhenius relationship:

n=Ae?/T, (2.2)

where T is the absolute temperature and A and B are constants of the liquid. In
general, for Newtonian liquids, the greater the viscosity, the stronger is the tempera-
ture dependence. Figure 2.1 shows this trend for a number o lubricating oil
fractions.

The strong temperature dependence of viscosity is such that, to produce accurate
results, great care has to be taken with temperature control in viscometry. For
instance, the temperature sensitivity for water is 3%per ° C at room temperature, so
that +1% accuracy requires the sample temperature to be maintained to within
+0.3°C. For liquids o higher viscosity, given their stronger viscosity dependence
on temperature, even greater care has to be taken.
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Fig. 2.1. Logarithm of viscosity /temperature derivative versuslogarithm d viscosity for variouslubricat-
ing ail fractions (Cameron 1966, p. 27).

It isimportant to note that it is not sufficient in viscometry to simply maintain
control o the thermostat temperature; the act of shearing itself generates heat
within the liquid and may thus change the temperature enough to decrease the
viscosity, unless steps are taken to remove the heat generated. The rate of energy
dissipation per unit volume o the sheared liquid is the product of the shear stress
and shear rate or, equivalently, the product of the viscosity and the square of the
shear rate.

Another important factor isclearly the rate of heat extraction, which in viscome-
try depends on two things. First, the kind of apparatus: in one class the test liquid
flows through and out of the apparatus whilst, in the other, test liquid is perma-
nently contained within the apparatus. In the first case, for instance in dits and
capillaries, the liquid flow itsdf convectssome of the heat away. On the other hand,
in instruments like the concentric cylinder and cone-and-plate viscometers, the
conduction o heat to the surfacesis the only significant heat-transfer process.

Secondly, heat extraction depends on the dimensions o the viscometers: for dlits
and capillaries the channel width is the controlling parameter, whilst for concentric
cylindersand cone-and-plate devices, the gap width isimportant. It is desirable that
these widths be made as small as possible.

2.2.3 Variation with pressure

The viscosity of liquids increases exponentially with isotropic pressure. Water
beow 30°C is the only exception, in which caseit is found that the viscosity first
decreases before eventually increasing exponentially. The changes are quite small
for pressures differing from atmospheric pressure by about one bar. Therefore, for
most practical purposes, the pressure effect is ignored by viscometer users. There
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Fig. 2.2. Variation of viscosity with pressure: (a) Di-(2-ethylhexyl) sebacate; (b) Naphthenic mineral il
a 210°F; (c) Naphthenic minera oil at 100°F. (Taken from Hutton 1980.)

are, however, situations where this would not be justified. For example, the oil
industry requires measurements of the viscosity of lubricants and drilling fluids at
elevated pressures. The pressures experienced by lubricants in gears can often
exceed 1 GPa, whilst oil-wel drilling muds have to operate at depths where the
pressureis about 20 MPa. Some examples of the effect of pressure on lubricants is
given in Fig. 2.2 where it can be seen that a viscosity rise of four orders of
magnitude can occur for a pressure rise from atmospheric to 0.5 GPa.

2.3 The shear-dependent viscosity of non-Newtonian liquids

2.3.1 Definition d Newtonian behauiour

Since we shall concentrate on non-Newtonian viscosity behaviour in this section,
it isimportant that we first emphasize what Newtonian behaviour is, in the context
o the shear viscosity.

Newtonian behaviour in experiments conducted at constant temperature and
pressure has the following characteristics:

(i) The only stress generated in simple shear flow is the shear stress ¢, the two
normal stress differencesbeing zero.

(i) The shear viscosity does not vary with shear rate.

(i) The viscosity is constant with respect to the time of shearing and the stress in
the liquid falls to zero immediately the shearing is stopped. In any subsequent
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shearing, however long the period o resting between measurements, the viscosity is
as previously measured.

(iv) The viscosities measured in different types o deformation are dwaysin simple
proportion to one another, so, for example, the viscosity measured in a uniaxia
extensional flow is always three times the value measured in simple shear flow (cf.
§5.3).

A liquid showing any deviation from the above behaviour is non-Newtonian.

2.3.2 The shear-thinning non-Newtonian liquid

As soon as viscometers became available to investigate the influence of shear rate
on viscosity, workers found departure from Newtonian behaviour for many materi-
as, such as dispersions, emulsions and polymer solutions. In the vast majority of
cases, the viscosity was found to decrease with increase in shear rate, giving rise to
what is now generdly called 'shear-thinning' behaviour although the terms tem-
porary viscosity loss and 'pseudoplasticity’ have also been employed.*

We shall see that there are cases (albeit few in number) where the viscosity
increases with shear rate. Such behaviour is generally caled 'shear-thickening'
athough the term 'dilatancy’ has aso been used.

For shear-thinning materials, the general shape of the curve representing the
variation of viscosity with shear stress is shown in Fig. 23. The corresponding
graphs o shear stress against shear rate and viscosity against shear rate are aso
given.

The curves indicate that in the limit of very low shear rates (or stresses) the
viscogity is constant, whilst in the limit of high shear rates (or stresses) the viscosity
is again constant, but at a lower level. These two extremes are sometimes known as
the lower and upper Newtonian regions, respectively, the lower and upper referring
to the shear rate and not the viscosity. The terms "'first Newtonian region” and
"second Newtonian region™ have also been used to describe the two regions where
the viscosity reaches constant values. The higher constant value is called the
" zero-shear viscosity™'.

Note that theliquid of Fig. 2.3 does not show 'yield stress' behaviour athough if
the experimental range had been 10* s™! to 10~ ! s™' (which s quite a wide range)
an interpretation of the modified Fig. 2.3(b) might draw that conclusion. In Fig.
2.3(b) we have included so-caled 'Bingham' plastic behaviour for comparison
purposes. By definition, Bingham plastics will not flow until acritical yield stress o,
is exceeded. Also, by implication, the viscosity isinfinite at zero shear rate and there
is no question of a first Newtonian region in this case.

Thereis no doubt that the concept of yield stress can be helpful in some practical
situations, but the question of whether or not a yield stress exists or whether all
non-Newtonian materials will exhibit a finite zero-shear viscosity becomes of more

* The German word is''strukturviscositat" which is literally trandated as structural viscosity, and is not
a very good description of shear-thinning.
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Fig. 2.3. Typical behaviour of a non-Newtonian liquid showing the interrelation between the different
parameters. The same experimental data are used in each curve. (a) Viscosity versus shear stress. Notice
how fast the viscosity changes with shear stress in the middle of the graph; (b) Shear stress versus shear
rate. Notice that, in the middle of the graph, the stress changes very slowly with increasing shear rate.
The dotted line represents ideal yield-stress (or Bingham plastic) behaviour; (c) Viscosity versus shear
rate. Notice the wide range of shear rates needed to traverse the entire flow curve.

than esoteric interest as the range and sophistication of modern constant-stress
viscometers make it possible to study the very low shear-rate region of the viscosity
curve with some degree of precision (cf. Barnes and Walters 1985). We simply
remark here that for dilute solutions and suspensions, there is no doubt that flow
occurs at the smallest stresses: the liquid surface levels out under gravity and there
is no yield stress. For more concentrated systems, particularly for such materials as
gels, lubricating greases, ice cream, margarine and stiff pastes, there is understanda-
ble doubt as to whether or not ayield stress exists. It is easy to accept that alump of
one of these materials will never level out under its own weight. Nevertheless there
is a growing body of experimental evidence to suggest that even concentrated
systems flow in the limit of very low stresses. These materials appear not to flow
merely because the zero shear viscosity is so high. If the viscosity is 10'°Pa.s it
would take years for even the slightest flow to be detected visualy!

The main factor which now enables us to explore with confidence the very low
shear-rate part of the viscosity curve is the availability, on a commercia] basis, of
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constant stress viscometers of the Deer type (Davis et a. 1968). Before this
development, emphasis was laid on the production of constant shear-rate viscome-
ters such as the Ferranti-Shirley cone-and-plate viscometer. This latter machine has
arange o about 20 to 20,000 s~ !, whilst the Haake version has a range of about 1
to 1000 s, in both cases a lo>-fold range. The Umstatter capillary viscometer, an
earlier development, with a choice of capillaries, provides a 10%-fold range. Such
instruments are suitable for the middle and upper regions of the general flow curve
but they are not suitable for the resolution of the low shear-rate region. To do this,
researchers used creep tests (§3.7.1) and devices like the plastometer (see, for
example, Sherman, 1970, p 59), but there was no overlap between resultsfrom these
instruments and those from the constant shear-rate devices. Hence the low shear-rate
region could never be unequivocaly linked with the high shear-rate region. This
situation has now changed and the overlap has already been achieved for a number
o materials.

Equations that predict the shape o the genera flow curve need at least four
parameters. One such is the Cross (1965) equation given by

NN 1

= , 2.2a
M~ Mw (1+(K7)") (222)
or, what is equivaent,
No— M .\m
0 - (K_Y) , (2.2b)

T N

where 5, and 5 refer to the asymptotic values o viscosity at very low and very
high shear rates respectively, K is a constant parameter with the dimension of time
and m is a dimensionlessconstant.
A popular aternative to the Cross model is the model due to Carreau (1972)
N~ N 1

To™Me (14 (Kpy)

% , (2.3)

where K, and m, have a similar significance to the K and m o the Cross modd.
By way o illustration, we give examples in Fig. 24 o the applicability of the
Cross model to a number of selected materials.
It isinformative to make certain approximations to the Cross model, because, in
so doing, we can introduce a number o other popular and widely used viscosity
models. * For example, for n < n, and n > »_, the Cross model reduces to

_
" k" ey

* We have used shear rate as the independent variable. However, we could equally well have employed
the shear stress in this connection, with, for instance, the so-called Ellis model as the equivalent of the
Cross model.
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Fig. 24. Examples of the applicability of the Cross equation (egn. (2.2a)): (a) 0.4% aqueous solution of
polyacrylamide. Data from Boger (1977(b)). The solid line represents the Cross equation with 7y =1.82
Pa.s, 1, = 26 mPa.s, K=15s, and m = 0.60; (b) Blood (normal human, Hb = 37%). Data from Mills et
al. (1980). The solid line represents the Cross equation with 5y =125 mPa.s, 5, =5 mPass, K=525s
and m = 0.715; (c) Aqueous dispersion of polymer latex spheres. Data from Quemada (1978). The solid
line represents the Cross equation with 5y = 24 mPa.s, 5, =11 mPa.s, K=0.018 s and m =1.0; (d)
0.35% aqueous solution of Xanthan gum. Data from Whitcomb and Macosko (1978). The solid line
represents the Cross equation with no =15 Pass, 7., =5 mPa.s, K =10, m = 0.80.

which, with a simple redefinition of parameters can be written
n=Ky"" . (25)
Thisis the well known'power-law' model and » iscalled the power-law index. X, is

called the 'consistency’ (with the strange units of Pa.s").
Further, if 7 < 1n,, we have

Mo
M=t (2.6)
(Kv)

which can be rewritten as
n=mn,+ K" (2.7)

Thisiscalled the Sisko (1958) model. If n isset equal to zeroin the Sisko model, we
obtain

77=,,,°°.|..?_, (2.8a)
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Fig. 2.5 Typical viscosity /shear rate graphsobtained using the Cross, power-law and Sisko models. Data
for the Cross equation curve are the same as used in Fig. 2.3. The other curvesrepresent the same data
but have been shifted for clarity.

which, with a simple redefinition of parameters can be written
o=0,+1,7, (2.8b)

where a is the yield stress and 7, the plastic viscosity (both constant). This is the
Bingham model equation.

The derived equations apply over limited parts of the 'flow curve. Figure 2.5
illustrates how the power-law fits only near the central region whilst the Sisko model
fits in the mid-to-high shear-rate range.

The Bingham equation describes the shear stress/ shear rate behaviour of many
shear-thinning materials at low shear rates, but only over a one-decade range
(approximately) of shear rate. Figures 2.6(a) and (b) show the Bingham plot for a
synthetic latex, over two different shear-rate ranges. Although the curves fit the
equation, the derived parameters depend on the shear-rate range. Hence, the use of
the Bingham equation to characterize viscosity behaviour is unreliable in this case.
However, the concept of yield stress is sometimes a very good approximation for
practical purposes, such asin characterizing the ability of a grease to resist slumping
in a roller bearing. Conditions under which this approximation is valid are that the
local valueof n issmall (say <0.2) and the ratio n,/n., isvery large (say > 10%).

The Bingham-type extrapolation of results obtained with a laboratory viscometer
to give ayield stress has been used to predict the size of solid particles that could be
permanently suspended in a gelled liquid. This procedure rarely works in practice
for thickened agueous systems because the liquid flows, albeit slowly, at stresses
below this stress. The use of n, and Stokes' drag law gives a better prediction of the
settling rate. Obvioudly, if this rate can be made sufficiently small the suspension
becomes " non-settling™ for practical purposes.
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The power-law model of egn. (2.5) fits the experimental results for many
materials over two or three decades of shear rate, making it more versatile than the
Bingham model. It is used extensively to describe the non-Newtonian flow proper-
tiesdf liquidsin theoretical analysesas wdl asin practical engineering applications.
However, care should be taken in the use of the model when employed outside the
range o the data used to define it. Table 2.3 contains typical vaues for the
power-law parameters for a selection o well-known non-Newtonian materials.

The power-law modd fails at high shear rates, where the viscosity must ulti-
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TABLE 23

Typica power-law parameters of a selectiond well-known materials for a particular range of shear rates.
Material K,(Pa.s") n Shear rate range (s~ 1)
Ball-point penink 10 0.85 10°-103

Fabric conditioner 10 06 [0°-102

Polymer melt 10000 06 102-104

Molten chocolate 50 05 107110

Synovial fluid 05 04 10-'-102

Toothpaste 300 03 10°-103

Skin cream 250 0.1 10°-102

L ubricating grease 1000 0.1 10-'-10?

mately approach a constant value; in other words, the local vaue of » must
ultimately approach unity. This failure o the power-law model can be rectified by
the use o the Sisko model, which was originally proposed for high shear-rate
measurementson lubricating greases. Examples of the usefulness of the Sisko model
in describing the flow properties of shear-thinning materials over four or five
decades o shear rate are given in Fig. 2.7.

Attempts have been made to derive the various viscosity laws discussed in this
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Fig. 27. Examples of the applicability of the Sisko model (egn. (2.7)): (8) Commercial fabric softener.
Data obtained by Barnes (unpublished). The solid line represents the Sisko model with 5., = 24 mPa.s,
K,=011Pas " and n =04, (b) 1% aqueous solution of Carbopol. Data obtained by Barnes (unpub-
lished). The solid line represents the Sisko model with 5., = 0.08 Pa.s, K, =82 Pas" and » = 0.066; (c)
40% Racemic poly-y —benzyl glutamate polymer liquid crystal. Data points obtained from Onogi and
Asada (1980). The solid line represents the Sisko model with n.,, =1.25 Pa.s, K, =155 Pa.s”, n = 0.5; (d)
Commercid yogurt. Data points obtained from deKee et al. (1980). The solid line represents the Sisko
model with 5., =4 mPa.s, K, = 34 Pas” and n =0.1.
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section from microstructural considerations. However, these laws must be seen as
being basically empirical in nature and arising from curve-fitting exercises.

2.3.3 The shear-thickening non-Newtonian liquid

It is possible that the very act of deforming a material can cause rearrangement
of its microstructure such that the resistance to flow increases with shear rate.
Typical examples of the shear-thickening phenomenon are given in Fig. 2.8. It will
be observed that the shear-thickening region extends over only about a decade of
shear rate. In this region, the power-law model can usually befitted to the data with
avaue of n greater than unity.

In amost all known cases of shear-thickening, thereis a region of shear-thinning
at lower shear rates.
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Fig. 2.8. Examples of shear-thickening behaviour: (a) Surfactant solution. CTA-sal. solution at 25° C,
showing a time-effect (taken from Gravsholt 1979); (b) Polymer solution. Solution of anti-misting
polymer in aircraft jet fuel, showing the effect of photodegradation during (1)1 day, (2) 15 days, (3) 50
days exposure to daylight at room temperature (taken from Matthys and Sabersky 1987); (c) Aqueous
suspensions of solid particles. Deflocculated clay slurries showing the effect of concentration of solids.
The parameter is the %w/w concentration (taken from Beazley 1980).
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2.3.4 Time effects in non-Newtonian liquids

We have so far assumed by implication that a given shear rate results in a
corresponding shear stress, whose value does not change so long as the value of the
shear rate is maintained. This is often not the case. The measured shear stress, and
hence the viscosity, can either increase or decrease with time of shearing. Such
changes can be reversible or irreversible.

According to the accepted definition, a gradual decrease of the viscosity under
shear stress followed by a gradual recovery of structure when the stressis removed is
called ‘ thixotropy'. The opposite type of behaviour, involving a gradual increase in
viscosity, under stress, followed by recovery, is caled 'negative thixotropy' or
‘anti-thixotropy'. A useful review of the subject of time effectsis provided by Mewis
(1979).

Thixotropy invariably occurs in circumstances where the liquid is shear-thinning
(in the sense that viscosity levels decrease with increasing shear rate, other things
being equal). In the same way, anti-thixotropy is usually associated with shear-thick-
ening behaviour. The way that either phenomenon manifests itself depends on the
type o test being undertaken. Figure 2.9 shows the behaviour to be expected from
relatively inelastic colloidal materials in two kinds of test: the first involving step
changes in applied shear rate or shear stress and the second being a loop test with

STEP CHANGE LOOP TEST

Shear rate
Shear rate

Time Time

Breakdown Equilibrium
= / levels of
“““““ stress

Rebuilding
Time Time

Shear stress
Shear stress

Shear stress

Shear rate
Fig. 2.9. Schematic representation of the response of an inelastic thixotropic material to two shear-rate

histories.
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the shear rate increased continuously and linearly in time from zero to some
maximum value and then decreased to zero in the same way.

If highly elastic colloidal liquids are subjected to such tests, the picture is more
complicated, since there are contributions to the stress growth and decay from
viscoelagticity.

The occurrence of thixotropy implies that the flow history must be taken into
account when making predictions o flow behaviour. For instance, flow of a
thixotropic material down a long pipe is complicated by the fact that the viscosity
may change with distance down the pipe.

2.3.5 Temperature effects in two-phase non-Newtonian liquids

In the simplest case, the change o viscosity with temperature in two-phase
liquids is merely a reflection of the change in viscosity o the continuous phase.
Thus some agueous systems at room temperature have the temperature sensitivity of
water, i.e. 3% per °C. In other cases, however, the behaviour is more complicated.
I n dispersions, the suspended phase may go through a melting point. Thiswill result
in a sudden and larger-than-expected decrease of viscosity. In those dispersions, for
which the viscodty levels arise largely from the temperature-sensitive colloidal
interactions between the particles, the temperature coefficient will be different from
that o the continuous phase. For detergent-based liquids, small changesin tempera-
ture can result in phase changes which may increase or decrease the viscosity
dramatically.

In polymeric systems, the solubility o the polymer can increase or decrease with
temperature, depending on the system. The coiled chain structure may become more
open, resulting in an increase in resistance to flow. This is the basis of certain
polymer-thickened multigrade oils designed to maintain good lubrication at high
temperatures by partially offsetting the decreasein viscosity with temperature o the
base oil (see dso §6.11.2).

2.4 Viscometersfor measuring shear viscosity

2.4.1 General considerations

Accuracy d measurement is an important issuein viscometry. In this connection,
we note that it is possible in principle to calibrate an instrument in terms of speed,
geometry and sensitivity. However, it is more usua to rely on the use of standar-
dized Newtonian liquids (usualy oils) of known viscosity. Variation of the molecu-
lar weight of the oils allows a wide range o viscositiesto be covered. These oils are
chemically stable and are not very volatile. They themselves are calibrated using
glass capillary viscometers and these viscometers are, in turn, calibrated using the
internationally accepted standard figure for the viscosity of water (1.002 mPa.s at
20.00° C, this value being uncertain to + 0.25%).Bearing in mind the accumulated
errorsin either the direct or comparative measurements, the everyday measurement
d viscosity must obviously be worse than the 0.25% mentioned above. In fact for
mechanical instruments, accuraciesdf ten times this figure are more realistic.
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Fig. 2.10. Examples of industrial viscometers with complicated flow fields, including star-ratings for
convenienceand robustness.
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2.4.2 Industrial shop-floor instruments

Some viscometers used in industry have complicated flow and stress fields,
although their operation is simple. In the case of Newtonian liquids, the use of such
instruments does not present significant problems, since the instruments can be
calibrated with a standard liquid. However, for non-Newtonian liquids, complicated
theoretical derivations are required to produce viscosity information, and in some
cases no amount of mathematical complication can generate consistent viscosity
data (see, for example, Walters and Barnes 1980).

Three broad types of industrial viscometer can be identified (Fig. 2.10). The first
type comprises rotational devices, such as the Brookfield viscometer. There is some
hope of consistent interpretation of data from such instruments (cf. Williams 1979).
The second type of instrument involves what we might loosely call "'flow through
constrictions”" and is typified by the Ford-cup arrangement. Lastly, we have those
that involve, in some sense, flow around obstructions such as in the Glen Creston
falling-ball instrument (see, for example, van Wazer et a. 1963). Rising-bubble
techniques can aso be included in this third category.

For al the shop-floor viscometers, great care must be exercised in applying
formulae designed for Newtonian liquids to the non-Newtonian case.

2.4.3 Rotational instruments; general comments

Many types of viscometer rely on rotational motion to achieve a ssimple shearing
flow. For such instruments, the means of inducing the flow are two-fold: one can
either drive one member and measure the resulting couple or else apply a couple
and measure the subsequent rotation rate. Both methods were well established
before the first World War, the former being introduced by Couettein 1888 and the
latter by Searlein 1912.

There are two ways that the rotation can be applied and the couple measured:
thefirst is to drive one member and measure the couple on the same member, whilst
the other method is to drive one member and measure the couple on the other. In
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modern viscometers, the first method is employed in the Haake, Contraves, Fer-
ranti-Shirley and Brookfield instruments; the second method is used in the Weissen-
berg and Rheometrics rheogoniometers.

For couple-driven instruments, the couple is applied to one member and its rate
of rotation is measured. In Searle's origina design, the couple was applied with
weights and pulleys. In modem developments, such as in the Deer constant-stress
instrument, an electrical drag-cup motor is used to produce the couple. The couples
that can be applied by the commercial constant stress instruments are in the range
107¢ to 10~2 Nm; the shear rates that can be measured arein the range 107¢ to 103
st', depending of course on the physical dimensions of the instruments and the
viscosity of the material. The lowest shear rates in this range are equivalent to one
complete revolution every two years; nevertheless it is often possible to take
steady-state measurementsin less than an hour.

As with all viscometers, it isimportant to check the calibration and zeroing from
time to time using calibrated Newtonian oils, with viscosities within the range of
those being measured.

2.4.4 The narrow-gap concentric-cylinder viscometer

If the gap between two concentric cylinders is small enough and the cylinders are
in relative rotation, the test liquid enclosed in the gap experiences an amost
constant shear rate. Specifically, if the radii of the outer and inner cylinders are rg
and r,, respectively, and the angular velocity of the inner is £2,, (the other being
stationary) the shear rate y is given by

2
¥ = Toth (2_9)

ro—n

For the gap to be classed as "' narrow" and the above approximation to be valid to
within a few percent, the ratio of r; to r, must be greater than 0.97.
If the couple on the cylinders is C, the shear stress in the liquid is given by

C

= , 2.10
’ 2ariL ( )
and from (2.9) and (2.10), we see that the viscosity is given by

C —
7= (_r03__r12 (2.11)
27582, L

where L is the effectiveimmersed length of the liquid being sheared. This would be
the real immersed length, /, if there were no end effects. However, end effects are
likely to occur if due consideration is not given to the different shearing conditions
which may exist in any liquid covering the ends of the cylinders.
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One way to proceed is to carry out experiments at various immersed lengths, |,
keeping the rotational rate constant. The extrapolation of a plot of C against | then
gives the correction which must be added to the real immersed length to provide the
value of the effective immersed length L. In practice, most commercial viscometer
manufacturers arrange the dimensions of the cylinders such that the ratio of the
depth of liquid to the gap between the cylinders is in excess of 100. Under these
circumstances the end correction is negligible.

The interaction of one end of the cylinder with the bottom of the containing
outer cylinder is often minimized by having a recess in the bottom of the inner
cylinder so that air is entrapped when the viscometer is filled, prior to making
measurements. Alternatively, the shape of the end of the cylinder can be chosen asa
cone. In operation, the tip of the cone just touches the bottom of the outer cylinder
container. The cone angle (equal to tan-' [(r, — r;)/ro]) is such that the shear rate
in the liquid trapped between the cone and the bottom is the same as that in the
liquid between the cylinders. This arrangement is called the Mooney system, after
its inventor.

2.4.5 The wide-gap concentric-cylinder viscometer

The limitations of very narrow gaps in the concentric-cylinder viscometer are
associated with the problems of achieving parallel alignment and the difficulty of
coping with suspensions containing large particles. For these reasons, in many
commercial viscometers the ratio of the cylinder radii is less than that stated in
§2.4.4; thus some manipulation of the data is necessary to produce the correct
viscosity. This is a nontrivial operation and has been studied in detail by Krieger
and Maron (1954). Progress can be readily made if it is assumed that the shear
stress/ shear rate relationship over the interval of shear rate in the gap can be
described by the power-law model of egn. (2.5). The shear rate in the liquid at the
inner cylinder is then given by

20,

pwrsez (2.12)

.)'/

where b is the ratio of the inner to outer radius (1.e. b= r,/ry). Note that the shear
rate is now dependent on the properties of the test liquid, unlike the narrow-gap
instrument.

The shear stress in the liquid at the inner cylinder is given by

C
o= . 213
2ariL ( )

The value of n can be determined by plotting C versus §2, on a double-logarithmic
basis and taking the slope at the value of £, under consideration.
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Fig. 2.11. Ratio of actual (egn. 2.12) to approximate (eqn. 2.9) shear rates at the rotating cylinder as a
function of theratio of the inner to the outer cylinder radii, with », the power law index, as parameter.

The viscosity (measured at the inner-cylinder shear rate) is given by

Cn(1—b*")
T T a4nrlLe, (2.14)
The error involved in employing the narrow-gap approximation instead o the
wide-gap expression, egn. (2.14), is shown in Fig. 2.11. Clearly, using vaues o
b < 0.97 gives unacceptable error when the liquid is shear-thinning (n < 1).

The lower limit of shear rate achievablein a rotational viscometer is obviously
governed by the drive system. The upper limit, however, is usualy controlled by the
test liquid. One limit is the occurrence of viscous heating of such a degree that
reliable correction cannot be made. However, there are other possible limitations.
Depending on which o the cylinders is rotating, at a critical speed the simple
circumferential streamline flow breaks down, either with the appearance of steady
(Taylor) vortices or turbulence. Since both of these flows require more energy than
streamline flow, the viscosity of the liquid apparently increases. In practical terms,
for most commercial viscometers, it is advisable to consider the possibility of such
disturbances occurring if the viscosity to be measured is less than about 10 mPa.s.

2.4.6 Cylinder rotating in a large volume o liquid
If we take the wide-gap Couette geometry to the extreme with the radius of the
outer cylinder approaching infinity, the factor (1—5%") in (2.12) and (2.14)
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Fig. 2.12. The cone-and-plateviscometer .Cr oss-sectional diagram of one possibleconfiguration,viz. cone
on top, rotating plate and couple measured on the cone. The inset shows the form of truncation used in
many instruments.

approaches unity. For a power-law liquid, the values of the shear rate and shear
stressin the liquid at the rotating cylinder o radius r, are then given by

y=2Q,/n (2.15)
and

__C

6= . 2.16
2ariL ( )

Again, at any particular value o §2,, n can be caculated as the local value o
d(In C)/d(In 9,). These equations are applicable to viscometers o the Brookfield
type in which a rotating bob is immersed in a beaker of liquid. The technique is
restricted to moderately low shear rates: 0.1s~! to 10 s™! is a typical range.

2.4.7 The cone-and-plate viscometer

In the cone-and-plate geometry shown in Fig. 2.12, the shear rate is very nearly
the same everywherein the liquid provided the gap angle 4, is small (see Chapter 4
for the details). The shear rate in the liquid is given by

¥ =18,/6,, (2.17)

where &, is the angular velocity of the rotating platten. Note that the shear rate
does not depend on the properties o the liquid.
The shear stress (measured via the couple C on the cone) is given by

3C
g = > 218
27a’ ( )
where a is the radius o the cone. Thus the viscosity is given by
3Cé,
- . 2.19
! 27a*R, ( )

If the liquid under investigation has a low viscosity, high rotational speeds are
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often necessary to produce torques large enough to be measured accurately. How-
ever, under these circumstances, 'secondary flows may arise (see, for example,
Walters 1975). The secondary flow absorbs extra energy, thus increasing the couple,
which the unwary may mistakenly associate with shear-thickening. Cheng (1968) has
provided an empirical formula which goes some way towards dealing with the
problem.

All cone-and-plate instruments allow the cone to be moved away from the plate
to facilitate sample changing. It is very important that the cone and plate be reset so
that the tip of the coneliesin the surface of the plate. For a1® gap angle and a cone
radius of 50 mm, every 10 pum o error in the axial separation produces an
additional 1%eerror in the shear rate.

To avoid error in contacting the cone tip (which might become worn) and the
plate (which might become indented), the cone is often truncated by a small
amount. In thiscase, it is necessary to set the virtual tip in the surface of the plate as
shown in Fig. 212 (b). A truncated cone also facilitates tests on suspensions.

2.4.8 Theparallel-plate uiscometer
For torsional flow between parallel plates (see Fig. 2.13) the shear rate at the rim
(r=a)isgven by

y,=a%,/h. (2.20)

It isthisshear rate that findsitsway into theinterpretation of experimental data for
torsional flow. It can be shown (Walters 1975, p. 52) that the viscosity is given by

h
n= 3¢ ’ (2.21)

1dinC
4 - =
2ma 91(1+3dln91)

where C is the couple on one of the plates. For power-law models, egn. (2.21)
becomes

3Ch
g — (2.22)

21ra491(1 + %)
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Fig. 2.13. Cross-sectional diagram of the torsional parallel-plate viscometer.
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It will be noticed from egn. (2.20) that the rim shear rate may be changed by
adjusting either the speed 2, or the gap h.

In the torsional-balance rheometer, an adaptation of the parallel-plate viscometer
(see Chapter 4 for the details), shear rates in the 10* to 10° s~! range have been
attai ned.

2.4.9 Capillary viscometer

If a Newtonian liquid flows down a straight circular tube of radius a at a volume
flowrate Q (see Fig. 2.14), the pressure gradient generated along it (dP/d!) is given
by the Poiseuille equation:

dP _ 807

dl gt

(2.23)

In this situation, the shear stress in the liquid varies linearly from (a/2)XdP/d!/) at
the capillary wall to zero at the centre line. For Newtonian liquids, the shear rate
varies similarly from 4Q/(7ra®) in the immediate vicinity of the wall to zero at the
centreline. If, however, the viscosity varies with shear rate the situation is more
complex. Progress can be made by concentrating on flow near the wall. Analysis
shows (cf. Walters 1975, Chapter 5) that for a non-Newtonian liquid, the shear rate
at the wall is modified to

40(3 1dlo
m(4+4d1 w), (2.24)

Yo =

whilst the shear stress at the wall o,,, is unchanged at (a/2) (d P/d!). The bracketed
term in (2.24) is caled the Rabinowitsch correction. Then finally

. g, ma*(dP/dl)
=== . 2
() =3 N dan) (2.25)

3
SQ(Z+Zdlnaw

When shear-thinning liquids are being tested, d(in Q)/d(In o,,) isgreater than 1 and
for power-law liquidsis equal to 1/n. Since »n can be aslow as0.2, the contribution
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Fig. 2.14. Cutaway diagram of laminar Newtonian flow in a straight circular capillary tube.
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of the d(In Q)/d(In a,,) factor to the bracketed term can be highly significant in
determining the true wall shear rate.

Care has to be taken in defining and measuring the pressure gradient d P /d/. If
the pressurein the external reservoir supplying the capillary and the receiving vessdl
are measured, then, unless the ratio of tube length to radius is very large (> 100),
allowance must be made for entrance and exit effects. These arise from the
following sources for al types of liquid:

(i) Viscousand inertial lossesin the converging stream up to the entrance.

(i) Redistribution of the entrance velocities to achieve the steady state velocity
profile within the tube.

(iii) Similar effects to the above at the exit.

Formulae exist which account for these effects for Newtonian liquids, (i) and
(iii) being associated with the names of Hagenbach and Couette (see, for example
Kestin et a. 1973). However, these effects are small if the ratio of tube length to
radius is 100 or more.

The main end effects can be avoided if at various points on the tube wall, well
away from the ends, the pressures are measured by holes connected to absolute or
differential pressure transducers. Any error arising from the flow of the liquid past
the holes in the tube wall (see §4.4.1.11) is cancelled out when identical holes are
used and the pressure gradient alone is required.

It is not often convenient to drill pressure-tappings, and a lengthy experimental
programme may then be necessary to determine the type-(i) errors in terms of an
equivalent pressure-drop and type-(ii) errors in terms of an extra length of tube.
The experiments required can be deduced from the theoretical treatment of Kestin
et a. (1973) and a recent application of them has been published by Galvin et d.
(1981). If theliquid is highly elastic, an additional entrance and exit pressure drop
arises from the elasticity. The so-called Bagley correction then allows an estimate of
the elastic properties to be calculated. It is also used to provide an estimate of the
extensional viscosity of the liquid (see 55.4.6).

Beforeleaving the discussion of the capillary viscometer, it is of interest to study
the pressure-gradient / flow-rate relationship for the power-law model (2.5):

dP _ 2K2[(3n+1)Q]"

=2 — (2.26)
From this equation we see the effect of changes in such variables as pipe radius. For
Newtonian liquids, the pressure drop for a given flow rate is proportional to the
fourth power of the radius, but this is changed if the liquid is shear-thinning. For
instance, if n= 1, the pressure drop is proportional to the square of the radius. This
is clearly important in any scale-up of pipe flow from pilot plant to factory
operation.
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Fig. 2.15. The velocity profiles for the laminar flow of power-law liquids in a straight circular pipe,
calculated for the same volumetric throughput. Note the increase in the wall shear rate and the
increasingly plug-likenature of the flow as » decreases.

Thevelocity profilein pipeflow isparabolic for Newtonian liquids. For power-law
liquids this is modified to

v(,)=_Q(_3’ﬂ(l _(L)‘"“’/") (2.27)

ma’(n+1) a

Figure 2.15 shows the effect of progressively decreasing the power-law index, i.e.
increasing the degreed shear thinning. We see the increasing plug-likenature of the
flow with, effectively, only a thin layer near the wal being sheared. This has
important consequencesin heat-transfer applications, where heating or cooling is
applied to the liquid from the outside of the pipe. The overall heat transfer is partly
controlled by the shear rate in the liquid near the pipe wall. For a power-law liquid,
this shear rate is changed from the Newtonian value by a factor [3 + (1,/r)]/4. This
means that heat transfer is increased for shear-thinning liquids (n<1) and de-
creased for shear-thickening liquids (n > 1), but the former is the larger effect.

2.4.10 Slit viscometer

Flow under an applied pressure gradient between two parallel stationary wallsis
known as dlit flow. It is a two-dimensional analogue o capillary flow. The
governing equations for dlit flow are (cf. Walters1975, Chapter 5)

5 —hdp (2.28)

4 4InQ ) (2.29)
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where h is the dlit height and b is the dlit width, Q isthe flow rate and d P/d/ isthe
pressure gradient.

Slit flow forms the basis of the viscometer version o the Lodge stressmeter. The
stressmeter is described more fully in Chapter 4. The viscometer version differsfrom
that discussed in §4.4.3 in that the transducer T, in Fig. 4.13 is unnecessary and is
replaced by a solid wall. The instrument has the advantage that shear ratesin excess
o 10° s~! can be achieved with little interference from viscous heating.

2.4.11 On-line measurements

It is frequently necessary to monitor the viscosity of a liquid "on lin€" in a
number of applications, particularly when the constitution or temperature o the
liquid is likely to change. Of the viscometers described in this chapter, the capillary
viscometer and the concentric-cylinder viscometer are those most conveniently
adapted for such a purpose. For the former, for example, the capillary can be
installed directly in series with the flow: the method has attractive features, but its
successful application to non-Newtonian liquids is non-trivial.

Care must be taken with the on-line concentric-cylinder apparatus, since the
interpretation o data from the resulting helica flow is not easy.

Other on-line methods involve obstaclesin the flow channel: for example, a float
in a vertical tapered tube, asin the Rotameter, will arrive at an equilibrium position
in the tube depending on the precise geometry, therate of flow, the viscosity and the
weight of the obstacle. The parallel-plate viscometer has also been adapted for
on-line measurement (see, for example, Noltingk 1975).



CHAPTER 3

LINEAR VISCOELASTICITY

3.1 Introduction

The word 'viscoelastic' means the simultaneous existence of viscous and elastic
properties in a material (cf. 51.2). It is not unreasonable to assume that al real
materials are viscoelastic, i.e. in al materials, both viscous and elastic properties
coexist. As was pointed out in the Introduction, the particular response of a sample
in a given experiment depends on the time-scaled the experiment in relation to a
natural time o the material. Thus, if the experiment is relatively dow, the sample
will appear to be viscous rather than elastic, whereas, if the experiment is relatively
fast, it will appear to be elastic rather than viscous. At intermediate time-scales
mixed, i.e. viscoelastic, response is observed. The concept of a natural time of a
material will be referred to again later in this chapter. However, a little more needs
to be said about the assumption of viscoelasticity as a universal phenomenon. It is
not a generaly-held assumption and would be difficult to prove unequivocally.
Nevertheless, experience has shown that it is preferable to assume that al red
materials are viscoelastic rather than that some are not. Given this assumption, it is
then incorrect to say that aliquid is Newtonian or that a solid is Hookean. On the
other hand, it would be quite correct to say that such-and-such a material shows
Newtonian, or Hookean, behaviour in a given situation. This leaves room for
ascribing other types o behaviour to the material in other circumstances. However,
most rheologists still refer to certain classes of liquid (rather than their behaviour) as
being Newtonian and to certain classes of solid as being Hookean, even when they
know that these materials can be made to deviate from the model behaviours.
Indeed, it is done in this book! Old habits die hard. However, it is considered more
important that an introductory text should point out that such inconsistenciesexist
in the literature rather than try to maintain a purist approach.

For many years, much labour has been expended in the determination of the
linear viscoelastic response o materials. There are many reasons for this (see, for
example, Walters 1975, p. 121, Bird et a. 1987(a), p. 225). First there is the
possibility of elucidating the molecular structure of materials from their linear-
viscoelastic response. Secondly, the material parameters and functions measured in
the relevant experiments sometimes prove to be useful in the quality-control of
industrial products. Thirdly, a background in linear viscoelasticityis helpful before
proceeding to the much more difficult subject of nun-linear viscoelasticity (cf. the
relative smplicity of the mathematicsin the present chapter with that in Chapter 8
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which essentially deals with non-linear viscoelasticity). Finally, a further motivation
for some past studiesd viscoelasticity came from tribology, where knowledge of the
steady shear viscosity function n(y) discussed in §2.3 was needed at high shear rates
(10% s~ or higher). Measurements of this function on low-viscosity " Newtonian'
lubricants at high shear rates were made difficult by such factors as viscous heating,
and this led to a search for an analogy between shear viscosity and the correspond-
ing dynamic viscosity determined under linear viscoelastic conditions, the argument
being that the latter viscosity was easier to measure (see, for example, Dyson 1970).

Many books on rheology and rheometry have sections on linear viscoelasticity.
We recommend the text by Ferry (1980) which contains a wealth of information and
an extensive list d references. Mathematical aspects o the subject are also well
covered by Gross (1953) and Staverman and Schwarzl (1956).

3.2 The meaning and consequences o linearity

The development o the mathematical theory of linear viscoelasticity is based on
a''superposition principle™. Thisimplies that the response (e.g. strain) at any timeis
directly proportional to the value of the initiating signal (e.g. stress). So, for
example, doubling the stresswill double the strain. In the linear theory of viscoelas-
ticity, the differential equations are linear. Also, the coefficients of the time
differentialsare constant. These constants are material parameters, such as viscosity
coefficient and rigidity modulus, and they are not allowed to change with changesin
variables such as strain or strain rate. Further, the time derivatives are ordinary
partial derivatives. This restriction has the consequence that the linear theory is
applicable only to small changesin the variables.

We can now write down a general differential equation for linear viscoelasticity
as follows:

] 92 3"
(1+a15+a2?+ +a"8t")°

_ 2 @ om ,
= B0+B15+B2-E)t—2+...+ﬁmat—m Y, ( 1)

wheren=m or n =m — 1 (seefor example, Oldroyd 1964). Note that for simplicity
we have written (3.1) in terms of the shear stress a and the strain vy, relevant to a
simple shear of the sort discussed in Chapter 1, except that we now dlow a and y to
be functions of the time t. However, we emphasise that other types of deformation
could be included without difficulty, with the stress and strain referring to that
particular deformation process. Mathematically, this means that we could replace
the scalar variablesa and vy by their tensor generalizations. For example, a could be
replaced by the stress tensor o, ;.
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3.3 The Kdvin and Maxwell models

We now consider some important specia cases o egn. (3.1). If B, is the only
non-zero parameter, we have

o =By, (3.2)

which is the equation of Hookean elasticity (i.e. linear solid behaviour) with 8, as
the rigidity modulus. If B, isthe only non-zero parameter, we have

o= ,Bl%% , (3.3)
or
o= By (3-4)

in our notation. This represents Newtonian viscous flow, the constant 8, being the
coefficient of viscosty.

If By (= G) and B, (=7) are both non-zero, whilst the other constants are zero,
we have

o=Gy+ny, (3.5)

which isone o the simplest models of viscoelasticity. It iscalled the'Kelvin model’,
athough the name'Voigt' isaso used. If astressa is suddenly applied at t =0 and
held constant thereafter, it is easy to show that, for the Kelvin model,

y=(5/G)[1 —exp(~t/7¢)], (3.6)

where 7¢ has been written for the ratio n/G. It has the dimension of time and
controls the rate o growth of strain y following the imposition o the stress a.
Figure 3.1 shows the development of the dimensionless group yG /& diagrammati-
cally. The equilibriumvaue o vy is 6/G; hence yG/o =1, which is also the value
for the Hooke modd. The difference between the two models is that, whereas the

/_ HOOKE MODEL
KELVIN MODEL

107

7G/6

0 Time

Fig. 3.1 Growth of strain y following the application of stress ¢ at time t =0 for a Kelvin model and
Hooke model.
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Hooke model reaches its final value of strain "instantaneously', in the Kelvin
model the strain is retarded. The time constant Ty is accordingly caled the
'retardation time. The word instantaneously is put in quotation marks because in
practice the strain could not possibly grow in zero time even in a perfectly elastic
solid, because the stress wave travels at the speed of sound, thus giving rise to a
delay.

It is useful at this stage to introduce "mechanical models’, which provide a
popular method of describing linear viscoelastic behaviour. These one-dimensiona
mechanical models consist of springs and dashpots so arranged, in parale or in
series, that the overal system behaves analogoudly to a real material, although the
elements themsalves may have no direct analogues in the actual material. The
correspondence between the behaviour of a model and a real material can be
achieved if the differential equation relating force, extension and time for the model
is the same as that relating stress, strain and time for the materia, i.e. this method is
equivaent to writing down a differential equation relating stress and strain, but it
has a practical advantage in that the main features of the behaviour of a material
can often be inferred by inspection o the appropriate model, without going into the
mathematicsin detail.

In mechanical models, Hookean deformation is represented by a spring (i.e. an
element in which the forceis proportional to the extension) and Newtonian flow by
adashpot (i.e. an element in which the forceis porportional to the rate of extension)
as shown in Fig. 3.2. The analogous rheologica equations for the spring and the
dashpot are (3.2) (with 8, = G) and (3.4) (with 8; =), respectively. The behaviour
of more complicated materials is described by connecting the basic elements in
seriesor in paralel.

The Kelvin moddl resultsfrom a parallel combination of a spring and a dashpot
(Fig. 3.3(a)). A requirement on the interpretation of this and all similar diagramsis
that the horizontal connectors remain paralel at al times. Hence the extension
(strain) in the spring is at al times equal to the extension (strain) in the dashpot.
Then it is possible to set up a balance equation for the forces (stresses) acting on a
connector. The last step is to write the resulting equation in terms of stresses and
strains. Hence, for the Kelvin modd the total stress a is equal to the sum of the
stresses in each element. Therefore

0 =0 +o0y (3-7)

L

(a) (b}

Fig. 3.2 Diagrammatic representations of ideal rheological behaviour: (a) The Hookean spring; (b) The
Newtonian dashpot.
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fal (b)
Fig. 3.3 The simplest linear viscoelastic models: (a) The Kelvin model; (b) The Maxwell model.

in the obvious notation, and using egns. (3.2) and (3.4) (with 8, = G and B8, =71) we
have

o= Gy +n7. (3.8)

This is identical to egn. (3.5), which was a very simple case of the general linear
differential equation (3.1). It is readily seen from the diagram of the Kelvin model
that after sudden imposition of a shear stress &, the spring will eventually reach the
strain given by o /G, but that the dashpot will retard the growth of the strain and,
the higher the viscosity, the dower will be the response.

Another very simple model is the so-called 'Maxwell model' *. The differential
equation for the model is obtained by making a, and B, the only non-zero material
parameters, so that

o+ Ty6 =177, (3.9

where we have written a; =y and 8; = .

If aparticular strain rate ¥ is suddenly applied at t =0 and held at that value for
subsequent times, we can show that, for t > O,

o=n7[1—exp(—t/my)], (3.10)
which implies that on start-up of shear, the stress growth is delayed; the time

constant in this case is Ty. On the other hand, if a strain rate which has had a
constant value ¥ for t < 0 issuddenly removed at t =0, we can show that, for t > 0,

o=nyexp(—1/7y). (3.11)

Hence the stress relaxes exponentially from its equilibrium value to zero (see Fig.
3.4). The rate constant 7, is called the 'relaxation time'.

* Recall the discussion in §1.2 concerning the influence of J.C. Maxwell on the introduction of the
concept of viscoelasticity in a fluid.
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Time
Fig. 3.4 Decay of stress a following the cessation of steady shear at time ¢ =0 for a Maxwell model,
where a4 = 7.

The pictorial Maxwell model is a spring connected in series with a dashpot (see
Fig. 3.3(b)). In this case, the strains, or equally strain-rates, are additive; hence the
total rate of shear v isthe sum o the rates of shear of the two elements. Thus

=Y+ v, (3.12)
which leads to

._S8 ¢

=242 (3.13)

or, after rearrangement,
o+ TG0 =77, (3.14)

in which 7, has been written for n/G. Thisequation is the same as egn. (3.9) which
arose as a specia case of the general differential equation.

The next level of complexity in the linear viscoelastic scheme is to make three of
the material parameters of egn. (3.1) non zero. If a,, 8; and B, are taken to be
non-zero we have the " Jeffreys model™. In the present notation, the equation is

o+ o =n(y+ 1Y), (3.15)

which has two time constants 7, and ;. With a suitable choice of the three model
parametersit is possible to construct two aternative spring—dashpot models which
correspond to the same mechanical behaviour as egn. (3.15). One is a simple
extension o the Kelvin model and the other a simple extension of the Maxwell
model as shown in Fig. 35.

We note with interest that an equation of the form (3.15) was derived mathemati-
cally by Frohlich and Sack (1946) for a dilute suspension of solid elastic spheresin a
viscous liquid, and by Oldroyd (1953) for a dilute emulsion of one incompressible
viscous liquid in another. When the effect of interfacial dlipping is taken into
account in the dilute suspension case, Oldroyd (1953) showed that two further
non-zero parameters (a, and 8,) are involved.
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Fig. 3.5 Spring-dashpot equivalentsof the Jeffreysmodel. The valuesof the constantsof the elementsare
given in termsof the three material parameters of the model (eqn. 3.15).

L

n, 72, /A

S

1

fa) b)
Fig. 3.6 The Burgers model: (a) and (b) are equivalent representationsof this 4-parameter linear model.

Finaly, in this preliminary discussion of the successive build-up of model
complexity, we draw attention to the so-called " Burgers modd™. This involves four
simple elements and takes the mechanically-equivaent forms shown in Fig. 3.6.

In terms o the parameters of the Maxwell-type representation (Fig. 3.6(b)), the
associated constitutive equation for the Burgers model has the form

o+ (A3 +X,)6+M A6 =(n3+m4)7+ (Ams +Amy)y. (3.16)

In thisequation the As are time constants, the symbol A being amost as common as
7 in the rheological literature.

3.4 The rdlaxation spectrum

It is certainly possible to envisage more complicated models than those already
introduced, but Roscoe (1950) showed that all models, irrespective of their complex-
ity, can be reduced to two canonical forms. These are usualy taken to be the
generdlized Kelvin moded and the generalized Maxwell model (Fig. 3.7). The
generalized Maxwell model may have a finite number or an enumerable infinity of
Maxwell elements, each with a different relaxation time.



a4 Linear viscoelasticity [Chap. 3

L OLLGE 4

(b}

Fig. 3.7 Canonical spring-dashpot models: (a) Distribution of Maxwell relaxation processes; (b)
Distribution of Kelvin retardation processes.

By asuitable choice of the model parameters, the canonical forms themselvescan
be shown to be mechanically equivalent and Alfrey (1945) has given methods for
computing the parameters of one canonical form from those of the other. In the
same paper, Alfrey also showed how a linear differential equation can be obtained
for either of the canonical forms and vice versa. |n other words, the three methods
of representing viscoelastic behaviour (the differential equation (3.1) and the two
canonical forms of mechanical model of Fig. 3.7 are equivalent and one is free to
choose any one of them as a basis for generdization to materials requiring a
continuous infinity of parameters to specify them.

In order to generdize from an enumerable infinity to a continuous distribution of
relaxation times, we choose to start with the simple Maxwell model, whose be-
haviour is characterized by the differential equation (3.9) or what is equivalent

o(t) =1 [ _expl-(t-)/r]3(r) dt, (3.17)

where we have dropped the subscript M in 7, to enable us to generaizeegn. (3.17)

without introducing a clumsy notation. * (See p. 144 for definitions of t and t').
Considering next, a number, », of discrete Maxwell elements connected in

parallel as in Fig. 3.7(a), we can generalize egn. (3.17), with the aid o the

* The integral equation (3.17) is obtained by solving the differential equation (3.9) by standard
techniques.
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superposition principle, to give
o()= ¥ [ exp[—(t=1')/n]3(r) dr’, (3.18)
i=1 i Yoo

where 5, and 7, now correspond to the ith Maxwell element.

The theoretical extension to a continuous distribution of relaxation times can be
carried out in a number of ways. For example, we may proceed as follows.

The " distribution function of relaxation times™ (or " relaxation spectrum™) N(7)
may be defined such that N(7) dt represents the contributions to the total viscosty
of al the Maxwell elements with relaxation times lying between r and ++ d+. The
relevant equation then becomes (on generalizing (3.18))

_ OON(T) ! ’ . ’ 1
o(t)—f0 _'r—f,m exp[—(t—¢")/r]y(¢") dt' dr, (3.19)
and if we introduce the "relaxation function™ ¢, defined by
<1>(t—t’)=f°'DM exp[—(t—1t") /7] d7, (3.20)
0 T

egn. (3.19) becomes
o()=[" o(t—1)y(t) dt (3.21)

We remark that we could have immediately written down an equation like (3.21)
on the basis of Boltzmann's superposition principle.

It is also possible to proceed from egn. (3.18) by introducing a distribution
function H(7) such that H(r)dr represents the contribution to the easticity
modulus of the processes with relaxation times lying in the interval 7 and =+ dr.
Further, other workers have used a spectrum of relaxation frequencies H(log F)
where F=1/(2#7). The relationships between these functions are

(N(7)/7) dr=H(7) dr= H(log F) d(log F). (3.22)

In a dow steady motion which has been in existence indefinitely (i.e. ¥ is small,
and independent of time) egn. (3.21) reduces to

0 =1NgY. (3.23)

where

S=] s(t-1) dt = ["() 4k,
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in which ¢ has been written for the time interval (t — t'). The variable ¢ is the one
which represents the time-scale of the rheological history. It is also easy to show
from egns. (3.19), (3.21) and (3.22) that

"OZwaN(T) dT=fowﬂ‘1’(7) d7=f_ww—H(;‘fFF) d(log F). (3.24)

We see from egn. (3.23) that , can beidentified with the limiting viscosity at small
rates o shear, as observed in steady state experiments. Thus, the equations in (3.24)
provide useful normalization conditions on the various relaxation spectra. It is also
o interest to note that n, is equal to the area under the N(r) spectrum, whilst it is
egual to the first moment o the H(r) spectrum.

3.5 Ogillatory shear

It isinstructive to discuss the response of viscoelastic materials to a small-ampli-
tude oscillatory shear, since this is a popular deformation mode for investigating
linear viscoelastic behaviour.

Let

v(1") =y exp(iwt’), (3.25)

wherei=v -1, w is the frequency and v, is a strain amplitude which is small
enough for the linearity constraint to be satisfied. The corresponding strain rate is

given by

7(1") =iwy, exp(iot’),

and, if thisis substituted into the general integral equation (3.21), we obtain

o(1) =iwy exp(iwt)fo“’(p(g) exp(—iwt) dE. (3.26)
In oscillatory shear we define a ‘complex shear modulus' G*, through the equation

a(t) =G*(w)v(1) (3.27)

and, from egns. (3.25), (3.26) and (3.27), we see that
G*(w)=iwfo°°¢(g)exp(—iwg)dg. (3.28)

It is customary to write

G* =G’ +iG” (3.29)
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and G' and G" are referred to as the 'storage modulus and 'loss modulus,
respectively. G' is aso called the dynamic rigidity. If we now consider, for the
purpose o illustration, the special case of the Maxwell model given by egn. (3.9) or
egn. (3.14) (with 7, = 1) we can show that

iwn

; *_ _1wrG
G*= gz O dternatively G* = ¥ (3.30)
and
N 22
G = % or dternatively G = 1(';|'wa7 (3:31)
’” nw i " Gaor
=———, oradternatively G"'=-—F—— 3.32
¢ 1+ w32 y 1+ o272 (3.32)

To some readers, the use of the complex quantity exp(iwt) to represent oscilla
tory motion may be unfamiliar. The aternative procedure is to use the more obvious
wave-forms represented by the sine and cosine functions, and we now illustrate the
procedure for the simple Maxwell mode.

Let

Y =¥, cOsWL. (3.33)
Thus, the strain rate is
¥ = —Yow sinwt, (3.34)

and if this is substituted into the equation for the Maxwell model, a first order
linear differential equation is obtained, with solution

6= —12% __(4r cosot — sinwr). (3.35)

@t o)

The part of the stress in phase with the applied strain is obtained by putting sinwt
egual to zero and is written G'y. The part of the stress which is out of phase with the
applied strain is obtained by setting cosot equal to zero and is written (G /w)7.
Hence

N7’

"o nw

in agreement with (3.31) and (3.32) as expected.
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Returning now to the more convenient complex representation of the oscillatory
motion, we remark that as an alternative to the complex shear modulus, we can
define'complex viscosity' »*, astheratio of the shear stress o to therate of shear v.
Thus

a(t) =n* (1), (3.38)

and it follows that, for the general integral representation,
7*(w) = fo $(£) exp(—iwt) dé. (3.39)

We now write
n* =n"—in", (3.40)

noting that »” is usually given the name 'dynamic viscosity'. The parameter »” has
no special name but it is related to the dynamic rigidity through G' = n"w. It isalso
easy to deduce that G” = v'w.

It is conventiona to plot results o oscillatory tests in terms of the dynamic
viscosity n° and the dynamic rigidity G'. Figure 3.8 shows plots o the normalized
dynamic functions o the Maxwell model as functions o w7, the normalized, or
reduced, frequency. The notable features are the considerable fall in normalized %’
and the comparable rise in normaized G' which occur together over a relatively
narrow range of frequency centred on «t=1. The changes in these functions are
virtually complete in two decades of frequency. These two decades mark the
viscoelastic zone. Also, in the many decades of frequency that are, in principle,
accessible on the low frequency side of the relaxation region, the model displays a
viscous response (G* — 0). In contrast, at high frequencies, the response is elastic
(n" ~ 0). From Fig. 38, the significance of r as a characteristic natural timefor the
Maxwell modél is clear.

n'/n G/G

10 o =70
log wt
Fig. 3.8 The Maxwell model in oscillatory shear. Variation of the normalized moduli and viscosity with
normalized frequency (7 =/G).



351 Oscillatory shear 49

In theliterature, other methods o characterizing linear viscoelastic behaviour are
to be found. For example, it is possible to define a'complex shear compliance’ J*.
By definition

y(1) =J*(w)a(1) (3.41)
in an oscillatory shear, with
Jr=J —iJ". (3.42)

It isimportant to note that, although J* = 1,/G*, the components are not similarly
related. Thus J* = 1/G" and J” #1/G".

The second aternative method o characterizing linear viscoelastic responseis to
plot G' and the 'loss angle’ 6. In this method, it is assumed that for an applied
oscillatory strain given by eqgn. (3.25), the stress will have a similar form, but its
phase will be in advance o the strain by an angle 6. Then,

o(t) =0, exp[i(wt T 8)]. (3.43)
It is not difficult to show that
tan 6=G"/G. (3.44)

Figure 3.9 shows how 6 and G/G (where G=17) vary with the normalized
frequency for the Maxwell model. At high valuesd the frequency, the response, as
aready noted, is that of an elastic solid. In these conditions the stress is in phase
with the applied strain. On the other hand, at very low frequencies, where the
response is that of a viscousliquid, the stressis 90° ahead o the strain. The change
from elastic to viscous behaviour takes place over about two decades of frequency.
This latter observation has already been noted in connection with Fig. 3.8. In Fig.
3.10, we show the wave-formsfor the oscillatory inputs and outputs. Figure 3.10(a)
represents an experiment in the viscoelastic region. Figure 3.10(b) represents very
high and very low frequency behaviour where the angle 6 is0© or 90°, respectively.

26/

1-0
G/G
N 10

log wt

-1-0

Fig. 39 The Maxwell model in oscillatory shear. Variation of the normalized storage modulus and phase
angle with normalized frequency.
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Fig. 310 Wave-forms for oscillatory strain input and stress output: (&) Solid line ( ) strain
according to egns. (3.25) and (3.33); dashed line (- - - - - -) stress in advance by angle &, according to egn.
(3.43); (b) Salid line ( ) strain input and also stress output for elastic behaviour; dotted line
(-....-) stress output for viscous behaviour.

Note that although the stress is 90° in advance of the shear strain for the viscous
liquid, it isin phase with the rate of shear.

3.6 Rdationships between functionsd linear viscoelasticity

In previous sections we have introduced a number of different functions which
can all be used to characterize linear viscoelastic behaviour. These range from
complex moduli to relaxation function and spectra. They are not independent, of
course, and we have already given mathematical relationships between some of the
functions. For example, egn. (3.28), which is fairly typical of the complexities
involved, relates the complex shear modulus G* to the relaxation function ¢.
Equation (3.28) is an integral transform and the determination of ¢ from G* can be
accomplished by inverting the transform. There is nothing sophisticated, therefore,
in determining one viscoelastic function from another: although this is a statement
"in principle”, and much work has been carried out on the non-trivial problem of
inverting transforms when experimental data are available only over a limited range
of the variables (like frequency of oscillation). The general problem of determining
one viscoelastic function from another was discussed in detail by Gross (1953) and
practical methods are dealt with by, for example, Schwarzl and Struik (1967).

Nowadays most experimental data from linear viscoelasticity experiments are
presented in the form of graphs of components of the dynamic parameters (such as
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complex modulus) and are rarely transformed into the relaxation function or the
relaxation spectrum.

3.7 Methods & measurement

Two different types of method are available to determine linear viscoelastic
behaviour: static and dynamic. Static tests involve the imposition of a step change
in stress (or strain) and the observation  the subsequent development in time of
the strain (or stress). Dynamic tests involve the application of a harmonicaly
varying strain.

In this section we shall be concerned with the main methods in the above
classification. Attention will be focussed on the principles of the selected methods
and nonewill be describedin detail. The interested reader is referred to the detailed
texts of Walters (1975) and Whorlow (1980) for further information.

An important point to remember is that, whatever the method adopted, the
experimenter must check that measurements are made in the linear range; otherwise
the results will be dependent on experimental details and will not be unique to the
material. The test for linearity is to check that the computed viscoelastic functions
are independent of the magnitude of the stresses and strains applied.

3.7.1 Satic methods

The static methods are either ‘creep’ tests at constant stress or relaxation tests at
constant strain (see Figs. 311 and 3.12). In theory, the input stress or strain,
whether it is an increase or a decrease, is considered to be applied instantaneously.
This cannot be true in practice, because o inertia in the loading and measuring
systems and the delay in transmitting the signal across the test sample, determined
by the speed of sound. As a general rule, the time required for the input signal to
reach its steady value must be short compared to the time over which the ultimate
varying output is to be recorded. This usualy limits the methods to materials which
have relaxation times o at least a few seconds. A technique for estimating whether
apparatus inertia is influencing results is to deliberately change the inertia, by

~ 72
g
£ 5
n
0 ty & Time, t
Fig. 311 Typical creep curve of strain y plotted against time t. A constant stress was applied at r =1,
and removed at t = ;. The strain comprises three regions: instantaneous (0 to y,); retardation (y, tov,);

constant rate (y, toy). In linear behaviour the instantaneous strains on loading and unloading are equal
and the ratio of stress to instantaneous strain is independent of stress; the constant-rate strain (y, to y;)
is not recovered.
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Time, ¢

onN
.

Stress, o

Fig. 3.12 Typical relaxation curve of stress o plotted against time ¢. A constant srain was applied at
t=1, and reversed at t=1,. In linear behaviour the instantaneouschangesof stressfrom 0 to ¢; and o,
to o5 are equal and the ratio of instantaneousstress to strain is independent of strain. The incomplete
relaxation at ¢ =¢, may indicateether that further relaxation would occur in a longer time, or, that the
material at very low deformation behaves like a Hookean solid and a residual stress would persist
indefinitely.

adding weights for example, and checking the effect on the derived viscoelastic
functions.

The basic apparatus for static tests is simple. Once the shape and means of
holding the specimen have been decided upon, it is necessary to apply the input
signal and measure, and record, the output. It is easier to measure strain, or
deformation, than stress. Hence, creep tests have been much more common than
relaxation tests.

The geometry chosen for static tests depends largely on the material to be tested.
For solid-like materials, it is usually not difficult to fashion a long slender specimen
for a tensile or torsional experiment. Liquid-like material can be tested in simple
shear with the concentric-cylinder and cone- and-plate geometries and constant-stress
rheometers are commercially available for carrying out creep tests in simple shear.
Plazek (1968) has carried out extensive experiments on the creep testing of polymers
over wide ranges of time and temperature.

3.7.2 Dynamic methods: oscillatory strain

The use of oscillatory methods increased considerably with the development of
commercial rheogoniometers, and a further boost was given when equipment
became available for processing the input and output signals to give in-phase and
out-of-phase components directly. With modern instruments it is now possible to
display automatically the components of the modulus as functions of frequency.

A general advantage of oscillatory tests is that a single instrument can cover a
very wide frequency range. Thisisimportant if the material has a broad spectrum of
relaxation times. Typically, the frequency range is from 1073 to 103 s~'. Hence a
time spectrum from about 10 to 1073 s can be covered. If it isdesired to extend the
limit to longer times, static tests of longer duration than 3 hr (104 s) would be
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Fig. 3.13 Representation of the cone-and-plate apparatus for oscillatory tests. The specimen is positioned
between the input motion and the output stress.

needed. The lower relaxation time limit of oscillatory methods can be extended by
wave-propagation methods (see § 3.7.3).

The conventional oscillatory methods involve the application of either free or
forced oscillatory strains in conventional tensile and shear geometries. An advantage
possessed by the free vibration techniqueis that an oscillator is not required and the
equipment can be fairly simple. On the other hand, the frequency range availableis
no more than two decades. The reason for thisis that a change of frequency relies
on a change in moment of inertia of the vibrating system and the scope for this is
limited. The method is readily adaptable to torsional deformation with solid-like
materials.

The wide frequency range quoted above is achieved with forced oscillations. We
show in Fig. 3.13 the most common example of the forced-oscillation experiment,
although the geometry could equally well be a parallel-plate or concentric-cylinder
configuration. The test material is contained between a cone and plate, with the
angle between the cone and plate being small (< 4°). The bottom member under-
goes forced harmonic oscillations about its axis and this motion is transmitted
through the test material to the top member, the motion of which is constrained by
atorsion bar. The relevant measurements are the amplitude ratio of the motions of
the two members and the associated phase lag. From thisinformation it is relatively
simple to determine the dynamic viscosity n” and the dynamic rigidity G+, measured
as functions of the imposed frequency (see Walters 1975 for the details of this and
related techniques).

3.7.3 Dynamic methods: wave propagation

A number of books are available which describe in detail the theory and practice
o wave-propagation techniques. Kolsky (1963) has dealt with the testing of solids,
Ferry (1980) has reviewed the situation as regards polymers and Harrison (1976) has
covered liquids. The overall topic is usefully summarized by Whorlow (1980).
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Basicdly, the waves are generated at a surface of the specimen whichisin contact
with the wave generator and the evaluation of the viscoelastic functions requires the
measurement o the velocity and the attenuation through the specimen. One
significant advantage of wave-propagation methods is that they can be adapted to
high frequency studies. they have been commonly used in the kHz region and
higher, even up to a few hundred GHz. This is invaluable when studying liquids
which behave in a Newtonian manner in other types o rheometer. Such liquids
include, as a genera rule, those with a molecular weight below 10° They include
most of the non-polymericliquids. Barlow and Lamb have made significant contri-
butionsin this area (see, for example, Barlow et a. 1967).

3.7.4 Dynamic methods: steady flow

In the oscillatory experiments discussed above, instrument members are made to
oscillate and the flow is in every sense unsteady. A relatively new group o
instruments for measuring viscoelastic behaviour is based on a different principle.
The flow in these rheometersis steady in the sense that the velocity at a fixed point
in the apparatus is unchanging. (Such a flow is described in fluid dynamics as being
"steady in an Eulerian sense.) However, the rheometer geometry is constructed in
such a way that individual fluid elements undergo an oscillatory shear (so that the
flow is" unsteady in a Lagrangian sense’). A typical example of such an instrument
is the Maxwell orthogonal rheometer which is shown in Fig. 314 (Maxwell and
Chartoff 1965). It comprises two parallel circular plates separated by a distance h,
mounted on parallel axes, separated by a small distance d. One spindleis rotated at
constant angular velocity 52. The other is free to rotate and takes up a velocity close
to that of thefirst spindle.

The components of the force on one o the plates are measured using suitable
transducers. In the interpretation of the data it is assumed that the angular velocity
of the second spindleis also 52. It can then be readily deduced that individua fluid
elements are exposed to a sinusoidal shear and that the components of the force on
each plate (in the plane o the plates) can be directly related to the dynamic
viscosity and dynamic rigidity.

The Maxwell orthogonal rheometer and other examples o the steady-flow
viscoelastic rheometers are discussed in detail by Walters (1975).

Fig. 3.14 Arrangement of rotating plates in a Maxwell orthogonal rheometer. Plate separation h; axis
displacement d. One spindle rotates at constant velocity £ and the second spindle takes up (nearly) the
same velocity.



CHAPTER 4

NORMAL STRESSES

4.1 The nature and origin of normal stresses

We have dready stated in §1.5 that, for a steady simple shear flow given by

v, =vyy, v,=0,=0, (4.1)
the relevant stress distribution for non-Newtonian liquids can be expressed in the
form

ny=°='?77(?), axz=0yz=0’
2§

. . (4.2)
xx_oyyle(Y)’ oyy_ozz=N2(Y)'
Thevariablese, N, and N, are sometimescalled the viscometricfunctions. A useful
discussion o the importance of these functions is given by Lodge (1974, p. 212). In
this chapter, we shall be concerned with the normal stress differences ¥, and N, or,
equivalently, the so-called normal stress coefficients ¥; and ¥,, where

N1=Y'2‘I'1’ N2=72‘p2' (4.3)

In principle, it is possiblefor a non-Newtonian inelastic model liquid to exhibit
normal-stress effects in a steady simple shear flow. The so called Reiner-Rivlin
fluid, which is a general mathematical model for an inelastic fluid (see §8.4), can be
used to demonstrate this. However, al the available experimental evidenceis that
the theoretical normal stress distribution predicted by this model, viz. N, =0,
N, #0 is not observed in any known non-Newtonian liquid. In practice, normal-
stress behaviour is adways that to be expected from models of viscoelasticity,
whether they be mathematical or physical models.

The normal stress differences are associated with non-linear effects (cf. 51.3).
Thus, they did not appear explicitly in the account of linear viscoelagticity in
Chapter 3. In the experimental conditions of small-amplitude oscillatory shear, in
which linear viscodasticity is demonstrated and the parameters measured, the three
normal stress components have the same value. They are equal to the ambient
pressure, which is isotropic. Similarly, in steady flow conditions, provided the flow
is dow enough for second-order termsin y to be negligible, the normal stresses are
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again equal to the ambient pressure. As the shear rate isincreased, the normal stress
differencesfirst appear as second-order effects, so that we can write

N] =A2}.,2 + 0(74)’

N,=Bi* + O(v*), 44)
where A, and B, are constants and, as implied, the normal stress differences are
even functions o the shear rate y. (The mathematically-minded reader may confirm
this expectation by undertalung a simple analysis for the hierarchy equations given
in Chapter 8 (egns. 8.23-8.25), which are argued to be generally valid constitutive
equations for sufficiently dow flow).

From a physical point d view, the generation of unequal normal stress compo-
nents, and hence non-zero valuesdof N, and N,, arises from the fact that in a flow
process the microstructure of the liquid becomes anisotropic. For instance, in a
dilute polymeric system, the chain molecules, which at rest occupy an enveloping
volume of approximately spherical shape, deform to an ellipsoidal shape in a flow
field. The molecular envelope before and during deformation is shown in Fig. 4.1.
The droplets in an emulsion change shape in a similar way. In the polymeric system
at rest, entropic forces determine the spherical shape whilst the requirement of a
minimum interfacial free-energy between an emulsion droplet and the surrounding
liquid ensures practically spherical droplets in the emulsion at rest. It follows
therefore that restoring forces are generated in these deformed microstructures and,
since the structures are anisotropic, the forces are anisotropic. The spherica
structural units deform into ellipsoidswhich have their magjor axestilted towards the
direction o flow. Thus the restoring forceis greater in this direction than in the two
orthogonal directions. The restoring forcesgive rise to the normal stress components
of egns. 4.2. It can be appreciated, from this viewpoint of their origin, why it is that
the largest of the three normal stress components is always observed to be g, the
component in the direction of flow. According to the principles of continuum
mechanics, the components can have any value, but it would be an unusua
microstructure that gave rise to components whose relative magnitudes did not
conformto N, =0, i.e. 3 =48, It isconceivablethat a strongly-orientated rest-
structure, as found in liquid crystals, might produce such unusual behaviour in
certain circumstances.

AT REST UNDER SHEAR
Fig. 4.1 The molecular envelopebefore and during shear defor mation.
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Fig. 4.2 Viscometric data for a 1% agueous solution of polyacrylamide (E10 grade). 20° C. Note that,
over the shear-rate range 102 to 10% s~1, N, is about ten times larger than a.

10° . 10%
POLYMER MELT X e
N
>
g
o <
Q IS
N g
N ¢ |3
g 107 10% |,
£ 3
I <
o 0
3 3
& S
a S
<
¥
(y

2 N’ 3

10 L 10

107! 109 10’

Shear rate, 7/5s7

Fig. 4.3 Viscometric data for a polypropylene copolymer. 230° C. Note that, over the shear-rate range
10° t010' s~1, N, is comparable in magnitude with a

4.2 Typical behaviour of N, and N,

In view of the discussion in the previous section of the thermodynamic origin of
the normal stresses, we expect N, to be a positive function of shear rate y. All
reliable experimental data for elastic liquids are in conformity with this and show
positive values of N, for all shear rates. Figures 4.2 and 4.3 show typical examples
for a polymer solution and polymer melt, respectively. Note that N, may have a
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Fig. 4.4 A plot of In N, against In ¢ at various temperaturesfor the polymer solution D2, which isa 10%
w,/v solution of polyisobutylene(Oppanol B50) in dekalin (cf. Lodge et al. 1987).

power-law behaviour over a range o shear rates, and we could write (cf. the related
discussion concerning the shear stress a in §2.3.2)

Nl =A?ms (45)

where A and m are constants, with m being typically in the range 1 <m< 2. As
with the shear stress, the power-law region cannot extend to very low shear rates
(unlessm = 2).

It isclear from Fig. 4.2 that the normal stressdifference N, in this case, is higher
than the shear stress a and such an observation is not unusual. The ratio of N; to a
is often taken as a measure of how elastic a liquid is; specifically N, /(2¢) is used
and iscalled the recoverable shear. It followsthat recoverableshears greater than 0.5
are not uncommon in polymeric systems. They indicate a ‘highly elastic' state.

For polymeric systems, it is often found that a plot of In N, against In a for a
rangedf temperatures resultsin a unique relationship which is a reasonably straight
line of dope near 2 (seealso §6.10 and Fig. 6.12). Figure 4.4 gives an illustration of
such behaviour for a polymer solution. A straight line of slope 2 is expected at low
shear rates in the so-called second-order region but there is no fundamental
justification for the line to be independent of temperature. Nor is there any
fundamental justification for this unique relationship to apply, as it often does,
outside the second-order regime.

It is generally conceded that the second normal stress difference N, is small in
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Fig. 4.5 Viscometric data for a Boger fluid: 0.184% polyisobutylene in a mixture of kerosene and
polybutene (B.P. Hyvis 30). 25° C.

comparison to N,. Indeed, for a so-called Boger fluid *, the second normal stress
difference has been found to be virtually zero (see, for example, Fig. 45 and
Keentok et al. 1980). We also remark that in the early days of norma stress
measurement (c.1950) N, = 0 was known as the Weissenberg hypothesis, and, within
the limitations of the first-generation rheometers, experimental results on a number
of systems were found to be in reasonable agreement with the hypothesis; the first
such test being made by Roberts (1953) with a prototype version of the Weissenberg
rheogoniometer. It is also noteworthy that some o the simpler microrheological
models for polymeric systems predict N, =0 (cf. Chapter 6). With N, >0, N, =0,
we note that the resulting normal stressdistribution is equivalent to an extra tension
along the streamlines, with an isotropic state of stress in planes norma to the
streamlines.

Modem rheometers are capable o determining N, with a reasonable degree o
precision, athough the level o toleranceis not as high as that associated with the
determination of a and N,. Non-zero values o N, can now be detected and
measured in many systems, but the ratio of | N, | to N; is usualy small (< 0.1).
Present reliable data on polymeric systems all show N, to be zero or negative: Fig.
4.6 shows the viscometric functions for a 2% solution of polyisobutylenein decalin
(the so-called D1 liquid). A comprehensive round-robin™ series of experiments was
carried out on D1 and the findings are given by Walters (1983) and Alvarez et al.
(1985). In this round-robin work, different types of instrument were used as well as
different observers. The excellent agreement between the results shows that with

* A Boger (1977(a)) fluid isa very dilute solution ( = 0.1% )of a high molecular-weight polymer in a very
viscous solvent. Although the solution does, in fact, display shear-thinning, the fall in viscosity is very
small compared to the zero-shear value, and for practical purposes the viscosity appear s to be constant
(see also §7.2).
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Fig. 4.6 Viscometric data for the polymer solution D1, which is a 2% w/v polyisobutylene (Oppanol
B200) solution in dekalin. 25° C (cf. Alvarez et al. 1985).

modem instruments it is possible to obtain consistency and accuracy in the
measurement of normal stress components.

4.3 Observable consequencesof N, and N,

Normal stresses are responsiblefor a number of effectsof laboratory interest and
of commercial importance. Those included here by way o examples are observable
with the aid o relatively simple equipment.

Perhaps the most well known and certainly the most dramatic effect is the
rod-climbing phenomenon, usualy referred to as the 'Weissenberg effect’. It is
produced when a rotating rod is dipped into a squat vessal containing an elastic
liquid. Whereas a Newtonian liquid would be forced towards the rim of the vesse
by inertia, and would thus produce a free surface that is higher at the rim than near
the rod, the elastic liquid produces a free surface that is much higher near the rod,
asshown in Fig. 4.7. The observed rise of the surfaceisindependent of the direction
o rotation.

The Weissenberg effect may be viewed as a direct consequence of the normal
stress o, ,, which acts like a hoop stress around the rod. This stress causes the liquid
to "strangle™ the rod and hence move aong it. The reaction o the bottom of the
vessal, which should not be sited too far from the end of the rod, adds to the rise of
the surface up the rod.

If the geometry of the rod-climbing experiment is changed by adding a flat disc
to the end of the rod and aligning the disc to be close to, and parallel with, the
bottom o the vessd, we have the configuration of one o a set of instruments used
for measuring N, and N,. Such instruments will be described later. Sufficeit to say
here that it can be shown that the strangulation caused by the first normal stress
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Fig. 4.7 The Weissenberg effect shown by a solution of polyisobutylene (Oppanol B200) in polybutene
(B.P. Hyvis 07). Reproduced by permission o Shell Research Ltd.

difference exerts a force between the bottom of the vessel and the disc, tending to
push them apart. The measurement of this force can be used to yield normal stress
information.

If the rod is replaced by a tube, open at both ends and with the disc (with a hole
in the middle) till in place, the Weissenberg effect causes the elastic liquid to flow
up the tube (Fig. 4.8). Flow will continue until the normal force is balanced by the
gravitational force, provided thereis enough liquid in the vessel. Thisis the principle
o the " normal force pump", which is probably more of a novelty than a practical
means o dispensing highly-elastic liquids.

Another phenomenon which can be reproduced with simple equipment, but yet
has important consegquences in manufacturing processes, is 'die swell', sometimes
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Fig. 4.8 The normal-force pump.

known as post-extrusion swelling. When an elastic liquid is extruded from a die or
flows from the exit of a tube, it usually swells to a much greater diameter than that
of the hole, asshownin Fig. 4.9. In fact, Newtonian liquids can aso show die swell,
but only at low rates of flow (with about a 13% swelling at negligibly small
Reynolds numbers), and as the flow rate increases the swelling decreases, eventually
becoming a contraction. In contrast, die swdl o an elastic liquid increases as the

Fig. 4.9 Die swell shown by a solution of 1% polyacrylamidein a 50,/50 mixture of glycerol and water.
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flow rate increases. A swelling o up to two or three times the hole diameter is not
unusual.

A convenient way d visualizing the origin of die swell is to consider the elastic
liquid flowing towards the orificeas a bundle of elastic threads stretched by the o, ,
normal stress component and when they emerge they are free to relax. The
relaxation causes the threads to shorten in length, hence the bundle increases in
diameter.

An important commercia process which is affected by die swell is the manufac-
ture of rods, tubes and sheets o polymeric material. These articles are made by
extrusion of molten polymer, which is an elastic liquid. Die swell causes problemsin
the control of the final thickness o the articles. The phenomenon is sensitiveto the
molecular-weight distribution of the polymer and such processing variables as flow
rate and temperature. Increasing the length of the entry to the nozzle and reducing
the angle of convergence to it are practical ways of reducing swelling, although at
the expense d an increased pressure drop. However, die swell cannot be completely
suppressed, so the satisfactory manufacture of a uniform product requires close
control of the conditions.

Finally, we should mention that the measurement of the equilibrium amount of
die swdll produced under fully-controlled experimental conditions forms the basis of
another method of measuring normal stress differences. There is a close link
between this method and the method known as jet-thrust. In the latter, the force
exerted by the emerging jet (of a necessarily mobileliquid), either directly onto an
intercepting transducer or as a reaction on the flow tube, is related to the die swell
and therefore also to normal stress levels (see, for example, Davies et al., 1975,
1977).

Normal stress effects are a'so important in those laminar mixing processeswhich
involve disc impellers and may occur to some extent with other types. The flow
pattern for a relatively inelastic liquid results from the interaction between viscous
and inertial forces and comprises a radial outflow from the central impeller and
return flows distant from the impeller as shown in Fig. 4.10. However, for a highly
elastic liquid, the direction o flow can be completely reversed. There are inter-
mediate cases when both types of flow pattern coexist. In this situation, the flow
pattern characteristic of the elasticliquid and generated by the normal stresses hugs
the impeller whilst the inelastic-liquid pattern is found in regions remote from the
impeller. Examples are given in Fig. 4.10. Obvioudly, liquid contained in the one
pattern will not mix very well with liquid in the other. Which type of flow pattern is
obtained in a given situation depends on the ratio of the elastic forcesto the inertial
forces. This ratio is a dimensionless group which is given by the ratio of the
Weissenberg number to the Reynolds number (W,/R,) *. The dual flow pattern is
to be found at intermediate values of this ratio.

* The ‘Weissenberg number' W, may be defined as the ratio o the first normal stress difference to the
shear stress in a steady simple shear flow.
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Fig. 410 Normal-stress effectsin mixing; showing how the form and direction of the circulation are
affected by increasing elasticity.

Although the second normal stress difference N, is generally of far less practical
significance than the first normal stress difference N, it isimportant to point out
that in some situations N, is very important. For example, it is the function N,(y)
which determines whether or not rectilinear flow in a pipe of non-circular cross
section is possible (see, for example, Townsend et al. 1976). A related problem is
wire coating, and the importance of N, in this practical problem has been stressed
by Tadmor and Bird (1974).

Such examples of the importance of N, are rare and apart from those who are
directly concerned with the situations cited, most practitioners in non-Newtonian
fluid mechanics tend to confine attention to N;, especidly in view o the relative
difficulty of measuring N,.

4.4 Methods d measuring N, and N,

As a generdity, the ideal method of measuring normal stress differences would
involve an uncomplicated shear geometry, which could be easily made, be amenable
to an exact mathematical analysis, and would enable the normal stress differencesto
be measured separately from shear and inertial forces. It is not possible to achieve
theideal, but the methods outlined below are the nearest to it.
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We have already stated that N, islargein comparison to N, and that the latter is
the more difficult to measure. For these reasons, it is customary to give greater
emphasis to methods for N; determination, and, in routine laboratory work, to
confine measurementsto N;.

The simplest flow is that shown in Fig. 1.1. in connection with Newton's
postulate. It can be generated by dliding two parallel plates over each other (‘plane
Couette flow"). There has been a limited number of attempts to use this method, but
it has practical limitations. Mobile liquids may run out o the gap, and it is
impossible to maintain a continuous shear for very long; hence the method is
restricted to extremely viscous liquids or (for less-viscous liquids) to very narrow
gaps, hence high shear rates. In thisform o the parallel-plate apparatus, Dealy (see,
for example Dedy and Giacomin 1988) uses flow birefringence as the means o
measuring normal stress and he inserts a flush-mounted transducer into the surface
of one plate to measure the shear stress, free from edge effects.

In view of the limitations of apparatus constructed for generating the primitive
smple shear, it is not surprising that a detailed search has taken place for flows
which are equivalent to steady simple-shear flow in a well-defined mathematical
sense. These 'viscometric flows include ‘Poiseuille flow' (i.e. steady flow under a
constant pressuregradient in a pipe of circular cross section), ‘circular Couette flow'
(i.e. steady flow between coaxial cylindersin relative rotation), torsional flow (i.e.
steady flow between parallel plates, one of which rotates about a normal axis) and
the corresponding cone-and-plate flow, which will figure prominently in the follow-
ing discussion. This list is not meant to be exhaustive and the reader is referred to
Walters (1975), Dealy (1982) and Lodge (1974) for other examples and greater
detail.

The proof that all these flowsare equivalent to steady simple-shear flow (with the
stress distribution expressiblein termsof o, N, and &) is non-trivial and has been
approached from different standpoints by Lodge (1974), Coleman et al. (1966), Bird
et al. (1987(a) and (b)) and Walters (1975).

4.4.1 Cone-and-plateflow

It is probably true to say that the cone-and-plate geometry is the most popular
for determining the normal stress differences. The basic geometry is shown sche-
matically in Fig. 4.11 (see also Chapter 2). The test liquid is contained between a
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Fig. 4.11 Basic geometry for cone-and-plate flow.
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rotating cone and a flat stationary plate. (Alternatively the plate is designed to
rotate with the cone stationary, with a small advantage as regards alignment).

With respect to suitably chosen spherical polar coordinates, the physica compo-
nents of the velocity vector at any point in the liquid are assumed to be (see Fig.
411)

V=0, =0, uvy,=rsne(d), (4.6)

with the boundary conditions that the angular velocity is zero at the plate surface
and £, at the surface of the cone, i.e.

w/2)=0, Q[(7/2) + 6] = 2,, (4.7)

where 6, is the gap angle. It can be shown that the flow represented by eqn (4.6) is
equivalent to a steady simple-shear flow with shear rate y = sine d{2/d#é, and that,
when the stress equations of motion are taken into account, we obtain for the shear
stress a (see, for example, Walters 1975, Chapter 4):

o(7) = A4 cosec?d, (4.3)
and, for the normal stress differences,

. dQ d . .
2pr? sin’ Q3G = a—a[Nl(y) +2N,(7)], (4.9)

where p is the density and A is a constant to be determined from the boundary
conditions. Equations (4.8) and (4.9) are in general incompatible (in the sense that a
solution to (4.8) will not be a solution to (4.9) and vice versa), unless we make the
following assumptions:

(i) inertial effectsare negligible, which means setting p=0 in (4.9);

(ii) the angle between the cone and the plate is small enough to allow us to set
cosec?@ =1 in (4.8), which in practical terms means restricting the gap angle 6, to
be no greater than 4°.

With assumptions (i) and (ii), we have
7= 2./6, (4.10)

i.e. thereis a constant shear rate throughout the sample and it isindependent o the
form o the viscometric functions. Equations (4.8) and (4.9) are now compatible.

It is easy to show that the torque C acting on the stationary plate of radius a is
given by (cf. Chapter 2)

27a’

c=a(), (4.11)
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and that if p is the pressure on the plate at a radius r, in excess of that due to
atmospheric pressure, then

Ty — ~ M) + 28], “.12)

i.e. thereis a logarithmic dependence dof 7 on r and the slope of the(p, In r) curve
can be used to yield N,(7) + 2N,(¥). Further, if the pressureis integrated over the
plate, we obtain the total normal force Fon the plate and it can then be shown that
(Walters 1975, Chapter 4)

2
F=T-N(7) (4.13)

Thisforce actsin the direction of the axis o rotation and pushes the cone and plate
apart. It is essentially the same force that produces the Weissenberg rod-climbing
effect.

The above analysistells us that the measurement of the rotational speed will give
the shear rate and that measurement o the torque on the stationary plate will give
the shear stress. As regards the normal stress differences, there are two alternatives.
First, the force F gives N,; secondly the radial distribution of pressure gives
N, T 2N,. Hence, in principle, the two normal stress differences can be obtained if
these two alternatives are both used.

Thereis a basic conflictin the normal force measurement, since the force F tends
to separate the cone from the plate. The consequenceadf such a separation, if it were
dlowed, is to upset the condition of uniform shear rate throughout the sample and
to reduce the mean value o shear rate. The ideal measuring system should be rigid
to axial forces. For systems which are not rigid, a servo-mechanism is used to
maintain the cone-plate gap.

Various potential sources of error have to be borne in mind when performing
experiments in the cone-and-plate geometry. The more important are enumerated
beow and we refer the reader to the texts of Walters (1975) and Whorlow (1980) for
further details.

I Inertial effect

The origin and nature of the effect of inertia has aready been mentioned. It gives
rise to the so-called " negative normal stress effect', whereby the plates are pulled
together and the measured value of the force F is smaller than the true value. The
reduction in the force F is given by (Walters 1975)

AF =3mpQ3a’/40. 4.14)

Thisformulais used to correct experimental values:. it can be seen that it is sensitive
to the rotational speed and very sensitiveto the plate radius.
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11 Hole-pressure error

A magjor sourced error which can arise when the pressure-distribution method is
used is known as the hole-pressure error (Broadbent et al. 1968). Any method of
measuring pressure which relieson the use o a holein the bounding surface gives a
low result with elastic liquids owing to the stretching of the flow lines as they pass
over the hole. The reduction is directly related to »; and isin fact used as a means
of measuring N,. This method is described later in this chapter, where a more
detailed description is given. The error is avoided by the use of tiff, flush-mounted
pressure transducers.

111 Edge effects

" Shear fracture" places an upper limit on the usable shear rate range for highly
elastic materials like polymer melts. It is observed as a sharp drop in all stress
components, and at the same time a change in shape of the free surface can be seen,
as well as a rolling motion in the excess liquid around the rim of the plates. A
horizontal free surface forms in the test sample at the rim and grows towards the
centre, hence reducing the sheared area. The limiting shear rate can be quite low,
depending on the liquid and the cone dimensions. Expressed as a critical normal
stress N{9, the limit is given by

N =c/ab,, (4.15)

where c isa constant o theliquid. For a given liquid, shear fracture is minimized if
the cone radius and gap angle are small.

The name " shear fracture™ was given to the effect by Hutton (1965) owing to its
similarity to 'melt fracture', which limits the occurrence of steady flow of polymer
meltsin tubes. Tordella (1956) made the first systematic study of melt fracture and
noted that when the effect is severe the stream o melt breaks up with an
accompanying tearing noise.

Another edge effect, also pointed out by Hutton (1972) is ascribable to changes
in contact angle and/or surface tension of the test liquid brought about by shear.
The effect is of potential importance when the test liquid possesses only small
normal stresses.

IV Miscellaneous precautions

The alignment of the cone axis to be coincident with the rotational axis, the
setting o the cone tip in the surface of the plate, and the minimizing of, or
correction for, viscous heating are other important matters to be taken into account
in accurate work.

4.4.2 Torsional flow

Torsional flow is shown schematically in Fig. 4.12 (see also Chapter 2). Clearly,
commercial instruments which are designed to work in a cone-and-plate mode can
be easily adapted to the parallel-plate geometry and vice versa.
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Fig. 4.12 Basic geometry for torsional flow.

In this case, with respect to suitably defined cylindrical polar coordinates, the
velocity distribution can be taken to be
vy =0, yg=re(z), v,=0, (4.16)
subject to the boundary conditions at the two plates
w(0)=0, w(h)=2, 4.17)

where h is the gap between the plates.
Taking into account the fact that egn. (4.16) is equivalent to a steady simple-shear
flow, the stress equations of motion are satisfied, with the shear rate given by

y=rQ,/h, (4.18)
provided
2pr%§ =0. 4.19)

Equation (4.18) implies that the shear rate is independent of the viscometric
functions: it dependson radial distance r, but is constant across the gap for fixed r.
This time, we see from egn. (4.19) that we have to neglect inertia for compatibility
and thereis no essentia restriction on the gap h, except of course that this must not
be too large that edge effects in a practical rheometer become important. The edge
effects mentioned in connection with the cone-and-plate instrument apply here.

After some routine mathematics, it is possible to show that the viscosity function
can be determined from measurements of the torque C through the equation (cf.
Chapter 2):

3C 1dinC
V)= ——— = 4.20
n(Yu) 2'”(13?0 (1+ 3 dln Y.a)’ ( )
where ¥, is the shear rate at the rim (r =a). It can also be shown that
2F 1dln F
(NI—NZ)?,,zﬂ__az( Edln'?a)’ (421)
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where F is again the total normal force on the plates. We see that total-force data
yield the combination N; — N, at the shear rate y, at the rim. Clearly, total force
measurements taken in the cone-and-plate and parallel-plate geometries can be
combined to yield N, and N, separately. However, since N, is small and two
separate experiments have to be performed, significant scatter in the final data can
be anticipated unless there is very refined experimentation.

Of interest is the fact that, in principle, relatively high shear rates can be attained
with small gaps h. This has been utilized in the so-caled "torsional balance
rheometer™ of Binding and Walters (1976) to obtain normal stress data at shear
rates in excess of 104 s™'. In this form of the instrument, a predetermined external
normal forceis applied to the upper plate and the separation h is alowed to vary
until this force balances the normal force generated by the liquid. Gap h is
measured and egns. (4.20) and (4.21) applied.

4.4.3 Flow through capillaries and slits

A consistent theory for normal stress measurement in flow through a capillary is
available(cf. Walters 1975, Chapter 5), but this depends critically on the flow being
"fully developed at the exit to the capillary, by which we mean that the Poiseuille
flow generated away from the influenced end effects should be maintained right up
to the capillary exit with no rearrangement of the velocity profile. Furthermore, the
experimental results have to be carried out with flush-mounted pressure tranducers
to avoid the hole-pressureerror problem, and thisis difficult on the curved walls of
a capillary. Therefore, the use of the potentially attractive exit-pressure measure-
ment technique of determining normal stress data is controversial (cf. Boger and
Denn 1980). The associated jet-thrust technique for low viscosity elastic liquids and
high shear rates is also based on the assumption o fully developed flow at the
capillary exit (cf. Davies et d. 1975, 1977).

In the Lodge (1988) stressmeter, which uses pressure-driven flow through a dlit,
the hole-pressure error mentioned above is turned to good use in the measurement
o N,. Asliquid flows past the hole under an applied pressure gradient, streamlines
adjacent to the boundary wal are deviated into and then out of the hole, as shown
in Fig. 4.13. For an eastic liquid the deviation is viewed as a stretching by the
normal stress component acting along the streamlines. The net result is a lowering
of the pressurein the hole. The holesin the stressmeter are a pair of slots set across
the flow direction as shown in Fig. 4.13. The reduction in pressure Ap is measured

L]
T3 T2

Fig. 4.13 Schematic diagram of the Lodge stressmeter for normal stress and shear stress measurement.
The dotted linesrepresent the tension in the streamlinesresulting in a lowered pressure in the holes.
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(as p, — p,) between the bottom o the hole beneath one of the dots and a
flush-mounted transducer whose diaphragm forms the boundary wall on the oppo-
site sde o the dit. The difference in pressure in the two dots ( p, — p,;) gives the
shear stress.

It has been shown theoretically that Ap isgiven by (cf. Tanner and Pipkin 1969)

Ap=N,/4 4.22)

for a second-order simple-fluid model (which will be shown in $8.5 to be a valid
dow-flow approximation for a general class of elastic liquid). The generalization of
eqgn. (4.22) embodied in the so called HPBL equation is used to interpret results for
flows which are certainly outside the "dow-flow" regime. The interpretation of
resultsis accordingly based on what must be seen as an empirical equation, with no
theoretical justification except at low shear rates. However, it appears to work well,
judged by recent comparative studies with other instruments (Lodge et al. 1987),
and shear rates as high as 10° s~! have been reached with multigrade motor oils
with this technique.

4.4.4 Other flows

Tanner (1970) has proposed that the free surface shape in gravity-driven flow
down an open tilted trough can be used to calculate the second norma stress
difference N,. In general terms, if the free surface rises near the centre, N, is
negative and, if it falls, &, is positive. The interpretation of datais not trivial, but
the technique provides a convenient method of determining estimates of N, at low
shear rates.

Circular Couette flow between rotating cylindersis popular in the determination
o the viscosity of non-Newtonian liquids (cf. $2.4). Attempts have also been made
to employ the flow to determine normal stress information from pressure readings
(Broadbent and Lodge 1972). The fact that the technigue has not been popular with
experimentalists since the original paper is probably an indication of the difficulty
of using the technique, or it at least points to the fact that much easier methods are
availablein rotational rheometry using, for example, cone-and-plate flow.

4.5 Relationshipsbetween viscometricfunctions and linear viscoelastic functions

Earlier in this chapter we argued that normal stress differencesin a simple-shear
flow were a direct consequenceaf viscoelasticity. We recall from $35 that viscoelas-
ticity can also be studied through a small-amplitude oscillatory-shear flow, the
resulting stress distribution for an elastic liquid being expressiblein terms o the
dynamic viscosity n° and the dynamic rigidity G. Now, since the departure from a
Newtonian responsein the viscometric functions n, N; and N, and in the dynamic
functions p” and G' can be ascribed to viscoel asticity, we should not be surprised to
find that there are relationships between the various rheometrical functions. In fact,
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Fig. 4.14 The Cox-Merz rule applied to the polymer solution D1, which is a 2% w/v polyisobutylene
(Oppanol B200) solution in dekalin. 25° C.

it is not difficult to deduce the exact relationships in the lower limits of frequency
and shear rate:

7' (0)]yo0 =1(V)l5-0, (4.23)
G'()| _MHE)| %l 4.24)
w? w—0 2?2 -0 2 30

The former relationship states that the viscosity measured in oscillatory shear in the
zero-frequency limit is equal to the low shear viscosity measured in steady shear.
Equation (4.24) is a relationship between the limiting values of dynamic rigidity and
first normal stress difference.

In many cases, it is easier to carry out dynamic measurements than steady shear
measurements and (4.23) and (4.24) provide a means of estimating the levels of
and ¥, (and hence N,) from measurementsof %" and G.

We note that in view o egn. (4.23) and the fact that both 5 and %" are usualy
monotonic decreasing functions of vy and w, respectively, various attempts have
been made to develop empirical relationships between n and %" at other than the
lower limitsdf shear rate and frequency. The most popular, and most successful in
this respect, certainly for polymeric liquids, is the so-called Cox-Merz (1958) rule,
which proposesthat # should be the samefunction of ¥ as|n* |isof «, where |n* |
is the modulusof the complex viscosity, i.e.

In*1=[(') + (6" /0)]"”. (4.25)
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Fig. 4.15 A test of therelationshipof egn. (4.24) showing the asymptotic approach of the oscillatory and
steady shear parameters. Steady shear and dynamic data for the polymer solution D3, which is a 1.5%
w /v polyisobutylene(Oppanol B200) solution in dekalin. 20° C.

In Fig. 4.14 we provide an example of the application of the Cox—-Merz rule to a
polymer solution.

In view of (4.24) and the fact that both G and N; are monotonic increasing
functions of w and v, respectively, we might be led to expect that a relationship
analogous to the Cox-Merz rule will hold between G' and N, (see, for example,
§6.10 and cf. Al-Hadithi et al. 1988). The limiting relationship (4.24) has been
confirmed many times and Fig. 4.15 provides just one example o this for a
polymericliquid, where we see that the valuesof N,/2¥? and G’ /w? coincide at low
valuesdf ¥y and w.



CHAPTER 5

EXTENSIONAL VISCOSITY

5.1 Introduction

The subject of 'extensiona’ (or 'elongational”) flow received scant attention until
the mid 1960s. Up to that time rheology was dominated by shear flows. In the last
twenty years or so the situation has changed dramatically with the dual redlization
that extensional flow is of significant relevancein many practical situations and that
non-Newtonian elastic liquids often exhibit dramatically different extensional flow
characteristics from Newtonian liquids. Accordingly, interest in the subject has
mushroomed and much effort is now expended in trying to measure the extensional
viscosty of non-Newtonian liquids, whether they be " stiff' systems like polymer
meltsor " mobile"” systemslike dilute polymer solutions, suspensions and emulsions.
The general subject is covered in the book by Petrie (1979) entitled " Elongational
Flows”. Petrie's book requires more than a passing acquaintance with mathematics
to be fully appreciated, but there is sufficient general detail in the book to make it
important reading for anyone requiring a thorough knowledge of the subject. The
works of Dealy (1982), Cogswell (1981), Meissner (1983, 1985), Miinstedt and Laun
(1981, 1986) are aso important sources of information for those whose direct
concern is polymer melts.

Unlike the situation in steady simple shear and oscillatory shear (see Chapters
2-4) where the subjects are mature, the study of extensional flow is still evolving.
Thisis reflected in the dightly different style of the present chapter.

For the velocity field (see Fig. 5.1(a))

v,

X

=éx, v,=—¢€y/2, v,=—¢€z/2, (5.1)

where ¢ is a constant extensional strain rate, the corresponding stress distribution
can be conveniently written in the form

oxx_oyy=oxx_ozz=énE(é)’ (5 2)
0, =0,=0,=0. '

where ng is the (uniaxial) extensional viscosity. In general, it is a function of the
extensional strain rate ¢, just as the shear viscosity is a function of shear rate y
($2.3). However, we shall see that the behaviour of the extensional viscosity function

75
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Fig. 5.1 The three different types of extensonal flow fields are shown by the arrows (a) Uniaxial; (b)
Biaxial; (c) Planar.

is frequently qualitatively different from that of the shear viscosity. So, for example,
highly elastic polymer solutions that possess a viscosity that decreases monotoni-
caly in shear (showing shear-thinning) often exhibit an extensional viscosity that
increases dramatically with strain rate.

A fluid for which ng increaseswith increasing ¢ is said to be 'tension-thickening’,
whilst, if 5 decreaseswith increasing ¢, it is said to be ‘tension-thinning'.

Experimentally, it is often not possible to reach the steady state implied in (5.1)
and (5.2). Under these circumstances, it is convenient to define a transient exten-
sional viscosity Bg(t, i), which is clearly a function of t as wdl as ¢. This arises
from the obvious analogue to (5.2) given that the extensiona flow field (5.1) is
initiated at time t=0 and maintained thereafter. In some respects this is a
disappointing admission o difficultieswhich certainly do not normally occur in the
measurement of the shear viscosity n(y). However, a study o ng(z, i) can ill
throw considerable light on the rheological response of non-Newtonian liquids. It is
also not without its industrial relevance, since in many practical situations liquids
are exposed to extensional flow fields over a limited period of time only (see, for
example, Bird et al. 1987(a) and Laun and Schuch 1988).

Another type df extensional deformation is the so-called biaxial extension, given
by (see Fig. 5.1(b))

v

X

=éx, v,=éy, v,=—2éz, (5.3)

where ¢ is a constant. This type of extensionis equivalent to stretching a thin sheet
of material in two orthogonal directions simultaneously, with a corresponding
decreasein the sheet thickness. It is found (approximately) when a circular free jet
impinges on a flat plate or in a lubricated squeeze-film flow (see, for example,
Soskey and Winter 1985) and when a balloon is inflated. The stress field corre-
sponding to (5.3) can be written in the form

0,,—0,=0,,—0, =—€n é),
vy EB( ) } (54)
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where ngg is the biaxial extensional viscosity. It can be shown that (Walters 1975, p.
211)

Nep(€) =2ng(—2€). (5.5)
Finally, a two-dimensional planar extensional flow given by (see Fig. 5.1(c))

=éx, v,=0, v,=—¢€z, (5.6)

z

1)
where i is a constant, yields a planar extensional viscosity ngp:

Oyx — 0, < e.""EP(E.) (57)

This type of extension is equivalent to stretching a thin flat sheet of material in one
direction only (the x direction), with a corresponding contraction in its thicknessin
the z direction, but with no change in the width of the sheet. Planar extensional flow
can be shown to be equivalent to that generally known as ** pure shear" (see, for
example, Walters 1975, Chapter 7).

In the present book, our general concern will be the uniaxial extensional viscosity
1 and its comparison to the equivalent shear viscosity. Fuller details about subjects
not enlarged on here are provided in the texts of Petrie (1979), Walters (1975),
Tanner (1985) and Bird et al. (1987(a) and (b)).

5.2 Importance of extensional flow

In polymer processing (see §6.11.1), a case can be made out that some operations
involve a significant component of extensional flow, with the obvious conclusion
that the measurement of extensional viscosity may sometimes be asimportant as the
determination of the shear viscosity. This will become increasingly so as manufac-
turers attempt to further increase production rates.

Any reasonably abrupt change in geometry in a processing operation will
generate a flow with an extensional component and, in particular, flows through a
sudden contraction or out o an orifice often lead to flow characteristics which
cannot be predicted on the basis of shear viscosity alone. The polymer engineer
must, therefore, have a working knowledged extensional flow and must, if possible,
know whether the materials he is processing are tension-thinning or tension-thicken-
ing. Certainly, the 'spinnability’ of a polymericliquid can be very dependent on its
extensional viscosity behaviour. To illustrate this, consider the fibre-spinning pro-
cess shown schematically in Fig. 5.2. It is clearly important for the process, which is
dominated by extensional flow, to be stable and for the threadline not to snap. The
tension along the threadline is obviously chosen to prevent fracture under normal
operating conditions and the main concern is with the propagation and magnifica-
tion o small disturbances, which are to some extent unavoidable in a physical
processd this sort.
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Fig. 5.2 The filament-necking imperfection in fibre spinning.

The stability of a spinning threadline is a vast area of study (see, for example,
Petrie 1979) and we shall do no more than isolate one possible cause for concern.
Let us speculate that for some reason a change in diameter occurs. From simple
continuity considerations we would expect the narrower part of the filament to
move faster than the rest of the threadline. Put in another way, the extensional
strain rate will now be higher in the narrow part. If the polymeric liquid is
tension-thinning, the resistance to extension is reduced in the narrow part and
motion in this part of the threadline is further accelerated. It becomes thinner and
may ultimately break.

If, on the other hand, the polymeric liquid is tension-thickening, the resistancein
the narrow part of the filament will now be increased. The flow in the filament will
dow down, the radius will increase and may be expected to return to that of the
remainder of the threadline. Tension-thickening is therefore a stabilizing influence
in this process.

Other examples of the importance of extensional viscosity in polymer processing
could be cited. Certainly, the polymer engineer needs to be aware of the fact that
two polymeric liquids which may have essentialy the same behaviour in shear can
show a different response in extension.

Later in this chapter we shall see that there is sufficient theoretical and experi-
mental evidence available to support the view that very dilute solutions of flexible
polymers can have extremely high extensional viscosities. Certainly, these can be
orders of magnitude higher than those expected on the basis of Newtonian theory.
This has important consequences in a number of practically important situations.
For example, it may significantly affect the pressure losses encountered in polymer
flooding in "enhanced oil recovery” (EOR) (see §6.11.3). Further, it may be the
cause of the phenomenon known as ""drag reduction™. When small concentrations
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Fig. 5.3 The 4-roll mill experiment. Schematic representation of the fluid velocitiesfor: (a) A Newtonian
liquid; (b) A highly elasticliquid, for which high extensional stresses at A and B reduce the inflow.

(of the order o a few parts-per-million) are added to a Newtonian solvent like
water, there is often a substantial reduction in drag in turbulent flow (Tanner 1985,
p. 423). Drag reduction is of potential importance in many spheres. For example,
small quantities of polymer may be injected into sewers during heavy rain to
upgrade flow and so prevent flooding.

Many different mechanisms have been proposed to account for the phenomenon
of drag reduction, but it may be linked to extensional viscosity and in particular to
the suppression of the roll-wave motion and vortex stretching in the sublayer by the
high extensional viscosity.

The potential importance of extensional viscosity effects in such processes as
calendering and paper coating is suggested by the four-roll mill experiments
discussed by Metzner and Metzner (1970) (see Fig. 5.3).

When the four-roll mill is immersed in a Newtonian liquid, the expected flow
regime shown in Fig. 5.3(a) is observed. However, in the case o some dilute
polymer solutions, the flow shown in Fig. 5.3(b) more adequately reflects the
observations. The flow at A and B istoo ""strong" to permit substantial amounts of
fluid to enter as in Fig. 5.3(a). Specificaly, the anticipated flow has a high
extensional component which resultsin high extensional stresses. The shear stresses
generated by the rotating rollers are not strong enough to overcome the large
extensional stresses and a reversed flow results at A and B.

Further examples of anomolous flow characteristics caused by high extensional
viscositiesare given in §5.6.
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Finally, we remark that extensional flow experiments can be viewed as providing
critical tests of any proposed constitutive equations. Indeed, the historical conven-
tion of matching only shear flow data with theoretical predictions in constitutive
modelling may have to be rethought in those areas o interest where thereis a large
extensional contribution. It may be more profitable to match any extensional
viscogty data which may be available, even if this means that the resulting
constitutive model loses some o its predictive value so far as shear data are
concerned.

5.3 Theoretical consider ations
Continuum mechanics is able to provide some useful insights into the exten-
siona-viscosity behaviour of non-Newtonian liquids. For example, the following

limiting relations between extensional and shear viscosities are true (cf. Walters
1975, Petrie 1979)

nE(é)lé-»0=37’(.'Y)|?~*U’ (5.8)

ﬂEP(é)Ie—»oz“n(?")l?—»O- (5.9)

We note that these relationships are vaid for all values of ¢ and y in the case of
Newtonian liquids. In particular, for Newtonian liquids,

ng = 37, (5.10)

a result obtained by Trouton as early as 1906. Accordingly, rheologists have
introduced the concept o the 'Trouton ratio' Ty defined as

Ty = ne(€) . (5_11)

Elagtic liquids are noted for having high Trouton ratios, but the definition as given
in egn. (5.11) is somewhat ambiguous, since it depends on both ¢ and ¥, and some
convention has therefore to be adopted to relate the strain rates in extension and
shear. To remove this ambiguity and at the same time provide a convenient estimate
of viscoelastic effects, Jones et a. (1987) have proposed the following definition,
based on a simple analysisfor an inelastic non-Newtonian fluid:

"o TIE(é)
Tr(¢) = 23O’ (5.12)

i.e., in the denominator, the shear viscosity is evaluated at the shear rate numerically
equal to V3 €. Jones et al. show that if the fluid isinelastic and isotropic, Ty is 3 for
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all values o i. They argue that any departure from the value 3 can be associated
unambiguously with viscoelasticity, so that the definition (5.12) not only removes
the ambiguity in the definition of the Trouton ratio, but also provides a convenient
means of estimating viscoelastic response.

Variable (shear) viscosity effects are accommodated in the analysis of Joneset d.,
which illustrates convincingly that a fluid that is shear-thinning must also be
expected to be tension-thinning in extension, if uiscodastic effects are negligible or
very small.

Continuum mechanics also supplies a limiting relationship between the exten-
sional viscosity ng and the normal stress coefficients ¥, and ¥, as determined in
shear flow. A simple analysisfor the so-called second-order model (whichis argued
in $8.5 to provide a general description of non-Newtonian behaviour in sufficiently
dow flow) leads to the following relation:

dy
dé

= %('1’1 + 2‘I'2)|y—>o- (5-13)

é—0

Available experimental evidence from shear-flow rheometry (cf. $4.2) would indi-
cate that

¥, =20, ¥<0, (5.14)
0< |9, <02¥, ’
SO we expect

dng

qe |, >0 (5.15)

for non-Newtonian elastic liquids. This is important, since it indicates that the
extensional viscosity ng must be an increasing function of ¢ for very small values of
é, i.e. initial tension-thickening must be anticipated for all elastic liquids satisfying
(5.14), whatever the response at higher valuesdof i may be.

Bird (1982) has made the interesting observation that it is usually easier to
calculate theoretically the extensional flow characteristics of molecular models than
the corresponding shear flow functions. He has also provided a useful summary of
the n predictions for various molecular models of polymericliquids. Many of them
predict infinite extensional viscosities at a finite value of the extensional strain rate
(cf. the predictions in Table 8.3). Partly to overcome this problem, Phan Thien and
Tanner (1977) proposed a model which alows ng to pass through a maximum
rather than take infinite values. For general and future interest, we show in Fig. 5.4
schematic ng and ngp curves computed for the so-called PTT model. Interestingly,
athough the initial values of ng and #gp are different at low strain rates, in
agreement with egns. (5.8) and (5.9), they are indistinguishable at high strain rates.

The general observation concerning the relative ease of carrying out theoretical
work on the extensional flow characteristics of molecular models is also illustrated
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Fig. 5.4 Showing how the planar, ngp, and uniaxial, n, extensional viscositiesvary with strain rate ¢ for
the Phan-Thien-Tanner (PTT) model.

by the important work of Batchelor (1970, 1971) on suspensions of slender particles.
He showed that the extensional viscosity for such systems can be very high,
depending on the aspect ratio of the particles.

54 Experimental methods

5.4.1 General considerations

It is generdly agreed that it is far more difficult to measure extensional viscosity
than shear viscosity, this being especially so for mobile liquids. There is therefore a
gulf between the strong desire to measure extensional viscosity and the likely
expectation of its fulfilment.

Concerning experimentation, we remark that, in the case of stiff systems, the
basic problem is not one of exposing the sample to a uniaxial extensional flow, but
rather of maintaining it for a sufficient time for the stress (in a controlled strain-rate
experiment) or the strain rate (in a controlled stress experiment) to reach a steady
state, thus enabling the steady extensional viscosity ng to be determined. This is
nowhere better illustrated than in the careful experimentation on the L DPE sample
commonly referred to as IUPAC A (see, for example, Meissner et d. 1981, and Fig.
5.12). Extensive early work up to Hencky strains * of 5 or 6 seemed to indicate that
an equilibrium had been reached, thus permitting the calculation of ng. However,
further experiments involving strains of up to 7 have indicated that the ' equi-
librium™ was in fact a*turning point™ and the ultimate equilibrium value of ng, if
it exists, must be lower than the original (overshoot) value (see, for example,
Meissner et a. 1981, Meissner 1985). However, the new data do not point unam-
biguoudly to a new equilibrium value and Bird et al. (1987(a), p. 135) stress the

* The Hencky drain e isdefined asIn(L/Ly) where L is the final length of the sample whose original
length is L.
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general difficulty of reaching a steady state in extension for many polymer melts,
questioning whether a meaningful extensional viscosity exists for some materials
and conditions. Fortunately, a knowledge of the transient function ng(t,¢é) may be
sufficient (or at least very useful) in many practical applications (cf. Bird 1982,
Laun and Schuch, 1988).

When it is redlized that the Hencky strain of 7 reached in the Meissner
experiments corresponds to stretching the sample to 1100 times its original length,
the difficultiesinvolved in extensional rheometry become self-evident.

The problems dof determining the extensional viscosity of mobile liquids are even
more acute, but they are df a different type from those experienced for iff systems.
With mobile liquids, severe difficulties arise in trying to achieve a continuous
extensional flow field which approximates that givenin egs. (5.1). The most that one
can hope for is to generate a flow which is dominated by extension and then to
address the problem of how best to interpret the datain terms o material functions
that are rheologically meaningful.

Fortunately, for many mobile elastic liquids, the extensional viscosity levels are
so high (and potentially important) as to justify such an approach. This fact has
spawned a number of extensional rheometersin recent years and most of them are
able to capture the high extensional viscosities which are known to exist. The main
outstanding problem is to assess critically the “ viscosities™ arising from the various
methods and to see whether a concensus emerges. Thisis under active consideration
(Walters 1988).

5.4.2 Homogeneous stretching method

The homogeneous stretching method, illustrated in Fig. 5.5, was the first to be
used to determine the extensional viscosity.

A magjor (unavoidable) disadvantage of this method is that, in order to attain a
constant extensional strain rate in the sample, the velocity of the movable block
must vary exponentially with time. In principle this can now be accomplished very
easily with the most recent electronic-control techniques, but the accelerating
motion o the clamp places a severe constraint on the strain rates which can be
attained, given the requirement that the motion must be sustained for a sufficient
time for the stress (which is measured at either the stationary or the moving block)
to reach a steady vaue.

For practical reasons the overall deformation is clearly restricted in the conven-
tional stretching method of Fig. 5.5. The Meissner (1972) apparatus shown in Fig.
5.6 goes some way to overcoming this problem (see also Laun and Miinstedt 1978).
Instead df end loading, constant stretching is provided by two sets of toothed whedls

Sample under
Stationary block test Movable block

Fig. 5.5 Schematicdiagram of the homogeneous stretching method.
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Fig. 5.6 Schematic diagram of the Meissner apparatus for attaining high strains (see, for example,
Meissner 1972). Note that the stretched specimen is supported by a suitableliquid.

which rotate with constant angular velocity. The stress can be measured by the
deflection of a spring F, associated with one pair of rollers.

Using this method on polymer melts, Meissner (see, for example, Meissner 1985)
has been able to reach Hencky strains as high as 7. A further recent development
has involved the use of a series of clamps in the form of a ring. In this way other
modes of (multiaxial) extensional deformation can be generated (Meissner 1985).

The homogeneous stretching method is clearly restricted to high-viscosity sys
tems.

5.4.3 Constant stress devices

The instruments shown schematically in Figs. 55 and 5.6 are of the constant
strain-rate type. An alternative technique, first introduced by Cogswell (1968) and
developed later by Miinstedt (1975, 1979) utilizes a constant stress, which is brought
about by applying a force to the movable block in Fig. 5.5, the force decreasing in
proportion to the cross-sectional area of the extending specimen. Cogswell exployed
this method using a cam to apply a programmed load, together with a convenient
means of measuring the length of the sample as a function of time.

It isinteresting to note that as a general rule the constant stress devices reach the
steady-state elongational flow regime at smaller total deformations than the con-
stant strain-rate devices. For example, Laun and Schuch (1989) quote that a strain
o 3.5 was required to reach equilibrium in a constant stress experiment on an
LDPE melt whereas a strain of 4.5 was required in the comparable constant
strain-rate experiment.

The constant stress devices are also clearly restricted to high-viscosity systems.

5.4.4 Spinning
It is self-evident that fibre spinning involves a significant extensional-flow
component. At the same time, it is extremely difficult (if not impossible) to interpret
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Fig. 5.7 Schematic diagram of the spin-line rheometer

the data unambiguously in terms of the extensional viscosity ng defined in egns.
(5.2). The problem is that, although the flow may be steady in an Eulerian sense (in
that the velocity at a fixed distance down the threadline does not vary with time) it
is unlikely to be steady in a Lagrangian sense (since the strain rate experienced by a
given fluid element will generally change asit movesaong the threadline). Further-
more, even when the strain rate is constant over a portion of the threadline (so that a
given fluid element is exposed to a constant strain rate for a limited period of time)
that element may still *remember" conditions experienced in the reservoir in the
case of highly élastic liquids. Certainly, there is ample evidence that a change of
conditions in the spinnerette can significantly affect the response along the thread-
line under some conditions.

The fibre-spinning experiment (Fig. 5.7) is therefore a typical illustration of the
dilemma facing rheologists who are interested in extensional-viscosity measurement.
It is relatively easy to perform, the general kinematics can be determined with
relative ease, and a suitable stress variable can be obtained from force measure-
ments on the reservoir or the take-up device (see, for example, Hudson and
Ferguson 1976, Jones et al. 1987). However, a consistent quantitative interpretation
of the experimental data in terms of the extensional viscosity 5 defined in egns.
(5.2) is not possible. One can certainly define an extensional viscosity by dividing
the measured stress by (say) an average value of the strain rate (Jones et al. 1987).
Given the difficulties encountered in measuring extensional viscosity and the scale
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of the viscoelastic response in such a flow, the proposed course of action can be
justified and may be al that is required in many circumstances.

The spinning technique can be used for polymer melts (see, for example, Laun
and Schuch 1989) and for low viscosity liquids (Jones et al. 1987). I n the commercia
spin-line rheometer (see, for example, Ferguson and El-Tawashi 1980) the wind-up
deviceisarotating drum. A variant of thisfor very mobileliquidsis to use a suction
device (Gupta and Sridhar 1984).

5.4.5 Lubricated flows

A schematic diagram of the lubricated-die rheometer is given in Fig. 5.8. The
shape of the test section is so designed that the flow is equivaent to steady
extensiona flow if there is perfect dip at the walls. To facilitate this, lubricant
streams of low-viscosity Newtonian liquids are employed. Pressure measurements
provide the relevant stress input.

This would seem to be a convenient technique for eliminating the unwanted
shearing induced by the rheometer walls, thus providing a flow close to the desired
extensiona flow. However, the interface boundary condition between the sample
and the lubricant is dependent on the rheological properties of the sample. The
interpretation of experimental data is therefore not without its problems and the
technique itself is far from easy to use (see, for example, Winter et al. 1979,
Williams and Williams 1985, Jones et a. 1987).

A similar technique has also been used by Winter (see, for example, Soskey and
Winter 1985) to study biaxial extensional flows of polymer melts. In this case
uniform discs of the sample are placed between two parallel circular plates, both of

Pressure measurement

; / on wall

Lubricant

Fig. 5.8 Schematic diagram of the lubricated-converging-flow rheometer; the shape of the channel wallsis
chosen such that the flow is equivalent to a pure extensional flow if the low-viscosity lubricant streams
are able to bring about " perfect dip" at the walls.
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which are coated with a low-viscosity lubricant. The plates are then sgueezed
together. The relationship between applied load and rate of squeezing is interpreted
in terms of the biaxial extensional viscosity ngg. Again, data interpretation is
difficult and the techniqueitsaf is not easy to use.

5.4.6 Contractionflows

The contraction-flow method of determining extensional properties can be ap-
plied equally well to polymer meltsand to more mobile systems like dilute polymer
solutions. Indeed, in the case of polymer melts, the so-called Bagley (1957) correc-
tion (or a suitable variant of it) must be used to interpret correctly shear viscosity
data from a capillary rheometer (cf. §2.4.9). The Bagley correction can be im-
mediately utilized to yield extensional-viscosityinformation on the melt, as we shall
see. Specificaly, in capillary rheometry where the test fluid is forced to flow under
pressure from a barrel into a capillary of much smaller radius, one techniqueis to
measure the pressurein the barrel for fixed capillary diameter D and varying length
L (cf. Chapter 2 and Fig. 5.9). At afixed flow rate, a plot of pressure as a function
of L/D provides sufficient information to facilitate shear-viscosity determination:
in particular, the pressuredrop for fuly developed Poiseuille flow along a capillary
of a given length can be determined.

Often, just two experiments are carried out in capillary rheometry: one for a
capillary of a reasonablelength (L/D > 20) and the other for so-caled orifice flow
(i.e. L=0). It is this last experiment (and by implication the Bagley correction)
which is of potential importance in the determination o extensional-viscosity
characteristics.

In general, a contraction geometry issimply two capillariesdf different diameters
with an abrupt contraction between them. In some experiments, as we have
indicated, flow through an orificeis an aternative.

Usualy, but not always, the flow consists of a central core and a vortex region
(see Fig. 5.10). The kinematicsare determined by the flow rate and the shape o the
central core region, whilst the relevant stress is obtained from the pressure drop
required to force the test fluid through the contraction. There is no doubt that the

PRESSURE DROP

Bagley
correction

0 L/D

Fig. 5.9 The Bagley correction. The pressuredrop (for a fixed flow rate and fixed capillary diameter) is
measured for variousvalues of capillary length.
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Fig. 5.10 Contraction flow. In the case of highly elastic liquids, vortex enhancement usually occurs.

contraction-flow experiment is relatively easy to perform and has many attractive
features.

An approximate analysisd the contraction-flow problem has been devel oped by
Binding (1988). This extends and reinterprets the early analysisof Cogswell (1972(a)
and (b)). The Binding analysisis based on the assumption that the flow field is the
one o least resistance; it includes both shear and extension in its formulation. The
theory successfully predicts the phenomenon of vortex enhancement, which is often
observed in axisyrnmetric contraction flows, and provides estimates of the exten-
sional viscosity.

5.4.7 Open-syphon method

The open-syphon technique is shown schematically in Fig. 5.11. Fluid from the
reservoir is drawn up through a nozzle by a vacuum pump and the nozzle is then
raised above the level of the liquid in the reservoir. With some liquids the upward
flow continues. Thisis the open-syphon effect. The flow rate and the dimensions of
the fluid column yield the relevant kinematical information and the stress is
provided by force measurements made at the top of the liquid column (see, for
example, Astarita and Nicodemo 1970, Moan and Magueur 1988).

In general terms, the open-syphon technique suffers from the same genera
disadvantagesas the spinning experiment, so far as data interpretation is concerned.
However, the former may have advantages in the case of structured materials like
gels. In the spinning experiment the structure is often changed by shear in the
delivery pipe. In contrast, the test material in the open-syphon technique isin its
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Fig. 5.11 The open-syphon technique for studying extensional flow. Liquid is sucked up from the
reservoir into a tube, and the downward pull on the tube is measured.

rest state before being exposed to a sudden extension and oneis therefore determin-
ing what is essentially a measure of the extensional properties of the virgin gel.

5.4.8 Other techniques

Numerous other techniques have been suggested for the study of the extensional
behaviour of mobile elastic liquids. These include the so-called triple-jet technique
(Oliver and Bragg 1974), the droplet techniquesof Schiimmer and Tebel (1983) and
Jones and Rees (1982), the elongation of radial filamentson a rotating drum (Jones
et al. 1986) and stagnation-point devices such as the opposing-jet techniques of
Odell et al. (1985), Keller and Odeli (1985) and Fuller et a. (1987).

5.5 Experimental results

Typical transient extensional-viscosity data for a polymer melt are given in Fig.
5.12 (cf. Meissner 1985, Bird et a. 1987(a)). It will be seen that as the strain rate € is
increased, the experimental results depart from " Trouton behaviour" *, increasing
abruptly with time. This is called "strain hardening'. There then follows the
maximum in 5. (¢, €) aready referred to in §5.4.1. In view of the extreme difficulty

* Trouton behaviour, in this context, is obtained from linear viscoelasticity theory.
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Fig. 5.12 Extensional viscosity growth mg(?, 2) as a function of time t for a low-density polyethylene
melt. 423 K (see, for example, Meissner 1985).

of obtaining data at relatively high strains, rheologists nowadays often simply quote
the maximum values of (7, i D (which were, of course, once thought to be the
equilibrium values n¢(€)). When this is done, one obtains the type of result shown
in Fig. 513 for four polymer melts. The data are consistent with the requirements of
egs. (5.8) and (5.15). Thereisaclear indication of a maximum in 5 with strain rate

for the polyethylenes.
If the extensional viscosity and shear viscosity are plotted as functions of stress,

i /\
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Fig. 513 Extensional viscosity data for four polymer melts (after Laun and Schuch 1989).
L DPE —low-density polyethylene; HDPE — high-density polyethylene; PS— polystyrene.
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Fig. 5.14 Extensional viscosity and shear viscosity as functionsof stressfor the low-density polyethelyne
designated lUPAC A. 423 K (cf. Fig. 5.12) (see, For example, Laun and Schuch 1989).

rather than strain rate, the response shown in Fig. 5.14 is obtained for a typical
low-density polyethylene melt.

In Fig. 5.15 we show extensional-viscosity data obtained from a spin-line
rheometer on a solution of polybutadiene in dekalin (Hudson and Ferguson 1976).
Here there is a further and substantial increase in 7y after the tension-thinning
region. Thedatain Figs. 5.13 and 5.14 do not extend to sufficiently high values of ¢
to indicate whether the ultimate tension-thickening trend occurs also for dtiff
polymeric systems.

We have aready indicated that the accurate determination of ng for mobile
elagtic liquids is very difficult, perhaps impossible, but the evidence to hand
indicates that the extensional viscosities which have been measured can be very high
indeed. For example, in Figs. 5.16 and 5.17 we show shear- and extensional -viscosity

N
[s)

o
0

Extensional viscosity, ng/Pas
3

1 1
10° 10’ 102
Strain rate.e /s

Fig. 5.15 Extensional viscosity curve determined with a commercial spin-line rheometer for a 6.44%
solution of polybutadienein dekalin (cf. Hudson and Ferguson 1976).
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Fig. 5.16 Viscometric data for agueous solutions of polyacrylamide (1175 grade) (Walters and Jones
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Fig. 5.17 Extensional viscosity data obtained from a spin-line rheometer for the aqueous polyacrylamide
solutions of Fig. 516 (Walters and Jones 1988). Note that whereas shear viscosity decreased with shear
rate, extensional viscosity increases with extensiona rate.
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Fig. 5.19 (a) Extensional viscosity data obtained from a spin-line rheometer for the polymer solutions
investigated in shear flow in Fig. 5.18; (b) Trouton ratios obtained from Figs. 5.18 and 5.19(a). Note that
although the Xanthan gum solution is tension-thinning (Fig. 5.19(a)), the associated Trouton ratios
increase with strain rate and are still significantly in excess of the inelastic value of 3.
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data for a series of very dilute aqueous solutions of a very high molecular-weight
polyacrylamide designated 1175 (Walters and Jones 1988). It is not difficult to
deduce that the Trouton ratios are as high as 10*,

We now refer to the rheometrical behaviour of two polymer solutions with almost
identical shear viscosity behaviour (see Figs. 5.18 and 5.19). One is a 2% aqueous
solution of polyacrylarnide (E10 grade) and the other a 3% aqueous solution of
Xanthan gum. We note that polyacrylamide is a more flexible polymer than
Xanthan gum which is rod-like. The corresponding extensional-viscosity data ob-
tained from a spin-line rheometer show that the polyacrylamide solution is strongly
tension-thickening, whereas the Xanthan gum solution is tension-thinning over the

Fig. 5.20 An illustration of the open-syphon effect for a 0.75% aqueous solution of polyethylene oxide.



5.61 High extensional viscosity behaviour 95

range studied. However, when the Trouton ratios are calculated on the basis of egn.
(5.12), we see that even the Xanthan gum solution has Ti values that are signifi-
cantly higher than the Newtonian value of 3 over most o the range.

Finally, we note that available evidence would indicate that the Trouton ratios
for non-polymericcolloidal liquids are much lower than those for polymericliquids
showing similar behaviour in small-amplitude oscillatory-shear flow.

5.6 Some demonstrationsof high extensional viscosity behaviour

We conclude this chapter by referring to some easily reproduced situations in
which the dramatic effects of high Trouton ratios are clearly in evidence. Some of
these can be readily performed in the laboratory with quite standard equipment.

We have dready referred to the open-syphon technique for measuring exten-
siona viscosity (cf. §5.4.7). We remark that the use of a 0.75% aqueous solution of
polyethylene oxide WSR 301 grade (or similar polymer solution) will enable the
experimenter to operate a conventional syphon several centimetres above the leve
of the reservair liquid.

The open-syphon effect is even more dramatically demonstrated when the
polymer solution is transferred from one full container to a lower empty container.
All that is normally required to (almost) empty the container is to start the flow by
dightly tilting the top container. Theinitial flow will be sufficient to empty the bulk
o the liquid from the top container (see Fig. 5.20). The open-syphon phenomena
can be directly attributed to the very high Trouton ratios exhibited by the polymer
solution. These and other dramatic demonstrations of high extensional-viscosity
behaviour are illustrated in the film" Non-Newtonian FHuids" produced by Walters
and Broadbent (1980) *.

Our final example of visua extensional-viscosity phenomena is provided by flow
past cylindrical obstructions placed asymmetricallyin a parallel channel (cf. Walters
and Jones1988). The flow is basically two-dimensional and may be considered to be
made up of narrow channels and wide channels formed by the offset positioning of
the circular-cylinder barriers (Fig. 5.21).

The behaviour of the Newtonian liquid is unspectacular with as much liquid
going through the narrow channels as one would expect. This behaviour may be
contrasted with that for the relatively inelastic Xanthan gum solution. In this case, a
substantial flow findsits way through the narrow channels, clearly on account o the
shear-thinning viscosity.

Finally, we note the qualitative differencein the behaviour of the highly elastic
shear-thinning polyacrylamidesolution. In this case, extensional viscosity consider-

* Thefilmisavailablein Video or 35mm form from the Department of Mathematics, University College
of Wales, Aberystwyth, UK.
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Fig. 5.21 Flow visualization pictures for: (a) a Newtonian liquid; (b) a Xanthan gum solution; (c) a
polyacrylamide solution. They show the dominant effectsof shear-thinningin the Xanthan gum solution
and tension-thickeningin the polyacrylamidesolution (see, for example, Waltersand Jones 1988).

ations are all important and virtually no liquid finds it way into the narrow
channels. Thereis a reatively fast-moving stream in the wide channelsand virtually
stagnant regions elsewhere (cf. the four-roll mill situation in Fig. 5.3).



CHAPTER 6

RHEOLOGY OF POLYMERIC LIQUIDS

6.1 Introduction

The rheological literature is dominated by discussions of polymer rheology. The
reasons for this are not difficult to determine; the subject is extremely important
industrially and much money and many resources are expended in carrying out the
relevant research. Also, polymeric liquids exhibit a wide range of rheological
phenomena and can often be tailor-made to facilitate fundamental rheological
research. Indeed, it should not have escaped the reader that most of the examples
used in earlier chapters to illustrate various rheological phenomena were cbtained
with polymeric liquids.

The dominance of polymer rheology is also reflected in the number of bocks
either devoted to the subject or strongly influenced by it. We shall have cause to
mention some of these in the course of this chapter, but at this point we refer
especially to the texts of Bird et al. (1987(a) and (b)) which contain a thorough study
of “the dynamics of polymeric liquids” and together are recommended as an
(almost} encyclopaedic treatise on the subject.

The fact that there are so many detailed and expert texts on polymer rheology
and that the subject itself is very broad in scope suggesis that, in the present
introductory text, we should do no more than attempt an overview of the subject,
pointing the interested reader to the preferred texts on matters of detail.

6.2 General behaviour

The generic term “polymeric liquids” can be viewed as including a spectrum of
possibilities, ranging from mobile systems like very dilute polymer solutions, through
the concentrated solution regime to stiff systems like polymer melts. All the
rheological properties introduced in earlier chapters can be demonstrated to occur
in suitably chosen polymer systems. The wide diversity of observed phenomena is
attributable to the long chain molecules, which are a unique charactenstic of
polymers. The length of the chain is the main factor determining the rheology,
although many other factors are also influential, as we shall indicate.

A long chain will occupy a great deal of space compared to its atomic dimen-
sions. The possibility of polymer molecules linking together, either temporarily by
intermolecular forces or more permanently by chemical cross linking (as in the

97
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Fig. 6.1 Steady shear and extensional viscosity data for a concentrated solution of a semi-rigid polymer of
modest molecular weight. 25° C. Fuil lines { ) steady shear data obtaired with a rheogoniometer
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based on the Cox-Merz rule for viscosity, Squares (BEM) N, derived from |G, | as described in §6.10.

vulcanization of rubber) increases still further the space over which the influence of
an individual molecule is felt. If the polymer chain is long enough, the intermolecu-
lar association known as entanglement occurs. The entangled polymer, whether in
the molten state or in non-dilute solution, gives rise to the effects of high elasticity,
such as normal stresses and high extensional viscosity,
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Fig. 6.2 Oscillatory data for the polymer solution of Fig, 6.1 obtained with a rheogoniometer, 25% C.
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The vast majority of polymeric liquids exhibit shear-thinning in a steady simple-
shear flow (cf. §2.3.2). Figure 6.1 contains a typical example, for a concentrated
solution (30%) of a stiff-chain polymer of moderate molecular weight (~ 20,000).
Such behaviour may be viewed as being of modest proportions and it is certainly
possible 10 generate more severe shear-thinning by, for example, increasing the
molecular weight of the polymer. However, the data in Fig. 6.1 clearly demonstrate
the existence of a first (lower) Newtonian region followed by the shear-thinning
zone. Figure 6.2 contains the corresponding dynamic data obtained from a small-
amplitnde oscillatory-shear flow (cf. §3.5). When the Cox—Merz rule * is applied to
the dynamic data, we see from Fig. 6.1 that the shear viscosity behaviour is
predicted very well over the available range of the data.

In some circumstances, because of experimental limitations, it is not possible to
reach the second (upper) Newtonian region, and it is even more difficult to reach
sufficiently high shear rates to check on the existence or otherwise of the ultimate
(shear-thickening) upturn in viscosity mentioned in §2.3.3. However, recent studies
have demonstrated that shear-thickening, sometimes accompanied by antithixot-
ropy, can be obtained in dilute polymer solutions beyond a critical set of conditions
(see, for example, Jackson et al. 1984).

Figure 6.1. also contains first normal stress data for the polymer solution. The
normal stress level is also modest and it is certainly possible to obtain much higher
normal stresses in polymeric liquids. N, data are not available for this polymer
solution, but from the discussion of §4.2 we would anticipate N, to be negative and
much smaller than M,

Extensional-viscosity results for the polymer solution are also included im Fig.
6.1. These were obtained from the spin-line rheometer and a contraction flow device
(cf. §5.4.6). n is seen to be relatively constant over the range of the experiments.
Since n(y) falls as ¥ increases, it is evident that the resulting Trouton ratios are
greater than 3 over much of the experimental range.

The extensional-viscosity behaviour of polymeric liquids is maybe the one area
where it is possible to distinguish qualitatively between the behaviour of dilute
polymer solutions and polymer melts. We have already alluded to this in §5.5, where
we showed that the general viscosity behaviour of dilute polymer solutions and
polymer melts was similar to that shown schematically in Fig. 6.3. In the former, ng
rises abruptly with strain rate € after some critical strain rate €., ng can reach very
high values indeed. In constrast, for a polymer melt, 5 is usually a weak function
of ¢, by which we mean that the magnitude of 5 does not change very much as € is
varied. Note, however, the indication that, even in the case of polymer melts, 7y
may ultimately rise sharply with increasing €. Arriving at a firm conclusion on this
matter is hindered by the difficulty of obtaining consistent experimental data at

* The empirical Cox—Merz (1958) rule states that the shear viscosity 7 should be the same function of
shear rate ¥ as 4| is of frequency w, where [7*| =[(9) +(G’/w)*|'/%, n" and G’ being the
dynamic viscosity and dynamic rigidity, respectively (see Chapter 3 and §4.5).
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Fig. 6.3 Schematic representation of typical shear viscosity n and extensional viscosity %y behaviour for:
(a) A dilute polymer solution; (b} A concentrated polymer solution or polymer melt.

sufficiently high strain rates, but recent molecular theories are not inconsistent with
such a trend (Marrucci 1988).

Note that for all polymeric liquids, the Trouton ratio is expected to be always
greater than or equal to 3, with the value 3 only attained at vanishingly small strain
rates {cf. Chapter 5).

We make passing reference to the one type of highly elastic polymer solution
which does not exhibit measurable shear thinning. We refer to the so-called Boger
(1977(a)) fluids, which are very dilute solutions of a high molecular-weight polymer
in a solvent with a high viscosity 7. The dissolved polymer only contributes a small
proportion (say 5%) to the final zero-shear viscosity n, of the polymer solution. This
means that the viscosity is essentially confined to lie between 7y and 7, so that the
shear-thinning is constrained to be at most 5% and, in practical terms, it appears
from conventional rheometry that the polymer solution has a constant viscosity. At
the same time, the presence of the high molecular-weight polymer, even at very low
concentration levels, can result in substantial normal siresses and high extensional
viscosities, and the polymer solution may be (loosely) regarded as being a highly
elastic constant-viscosity liquid *. Examples of such a liquid include very dilute
solutions ( ~ 0.1%) of polyacrylamide in a maltose syrup/ water base and very dilute
solutions (0.1%) of polyisobutylene in a mixture of kerosene and low molecular-
weight polybutene (see, for example, Prilutski et al. 1983). Boger fluids have proved
to be popular test fluids in the study of viscoelastic effects in complex flows (see, for
example, Binding et al. 1987).

* Some experimental evidence would suggest that N, = G for Boger fluids (see Fig. 4.5 and Keentok et al.
1980).
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6.3 Effect of temperature on polymer rheology

It is now instructive to consider the changes which can occur in a given pelymer
system when a variable parameter is scanned over a range. As a first example, we
take a thermoplastic polymer and change the temperature (se¢ also §2.2.2 and cf.
Tanner 1985, Chapter 9).

At temperatures well above the melting point T, the polymer is a liquid with a
measurable (shear-thinning) viscosity. It is possible to observe normal stresses in
simple shear flow and also relatively high extensional viscosities, which indicate that
the melt is viscoelastic.

As the temperature is reduced the viscosity increases rapidly and the elasticity
becomes more evident. In this state the melt displays a pronounced elastic recovery
from any deformation. It is this ability to recover from large deformations that
Jjustifies the description of the behaviour as “highly elastic’.

At still lower temperatures, some polymers crystallize and the freezing point 15 a
first-order transition which involves latent heat. Polyethylene is an example of a
crystallizing polymer. The semi-crystalline solid polymers have a shear modulus of
about 1 GPa. This value is about 10* times higher than the modulus of a typical
unhardened rubber but is lower than that for a metal. The polymer in this state can
in general undergo larger deformations than metals without fracturing,

Other polymers do not crystallize but continue to increase in viscosity, eventually
to form a glass. Polystyrene is an example of a non-crystallizing polymer. The glass
transition is not a well-defined change of state and depends on the method of
measurement. It is not accompanied by a latent-heat change. Some liquid-state
theories associate the glass transition temperature T, with the attainment of a
particular value of the free volume. Since free volume and viscosity are closely
related at high viscosities, 7, has also been associated with the attainment of a

TABLE 6.1
Transition temperatures and operating temperatures for some common polymers

7, {°C) {0 Normal melt-processing
temperatures (° C)
High density
polyethylene (HDPE) 140 ~100 160-240
Low density
polyethylene (LDPE)
Isotactic
— 15 .
polypropylene (PP) 165 180-240
Polvethylene
terephthalate (PET) 263 0 275-290
Nylon-66 265 40 275290

Polystyrene n/a 100 180-240
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certain viscosity, which has a value of about 10'? Pa.s. Since polymers do not
crystallize readily, it is reasonably easy to prevent crystallization by rapid cooling or
by introducing a degree of chain branching into the molecules.

Table 6.1 contains 7, and 7, values for some common polymers (from White
1980; see also Tanner 1985 p. 351).

6.4. Effect of molecular weight on polymer rheology
The second example illustrating general rheological behaviour of polymer sys-

tems is provided by a series of polymers at a given temperature but covering a range
of molecular weights.

poly (dimethylsiioxane)

poly (butodiene ) .
poly Imethyimethacrylate)
poly (styrene)

=k,

fog (n}+ const.

4
1 * 1 i ]

o 7 2 3 4 5 &
log M, )+ consi.

Fig. 6.4 Varnation of zero-shear melt viscosity with molecular weight. The data have been sealed using
constant factors in order that the change in slope should occur at the same position and the curves should
be separated. To the left of the traasition the slope is 1.0, whilst te the right the slope is 3.4 {from Ferry
1980, p. 244).
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The monomer, and molecules containing just a few monomer units, are indis-
tinguishable (rheologically) from small-molecule liquids, but at and above a certain
length, the molecules become polymeric. In very high-frequency oscillatory experi-
ments, Lamb and his coworkers (see, for example, Gray et al. 1977) found no
evidence of polymeric modes of motion in chains of polystyrene and other mono-
mers less than eleven monomer units long, In samples of greater chain length than
this, they observed polymeric behaviour.

The zero-shear viscosity 5, of the melt increases (initially) as M'°, where M is
the molecular weight. With a further increase in M, n, varies as M*>*. The change in
the slope of the (n,, M) curve is reasonably sudden and can be identified with a
critical molecular weight denoted by M,. Some representative graphs taken from the
extensive work of Berry and Fox (1968) and quoted by Ferry (1980, p. 244) are
shown in Fig. 6.4.

The melts in the region above the critical molecular weight are highly elastic. It is
thought that the change in M-dependence is the result of the formation of
entanglements between molecules. Entanglements are not merely the overlapping of
adjacent molecules, since overlapping occurs at quite low molecular weight. Rather,
entanglements are strong couplings, whose details are largely unresolved, but which
act in a localized manner like chemical cross-links between molecules.

6.5 Effect of concentration of the rheology of polymer solutions

We now consider the example of a polymer in solution. The polymer and solvent
chosen are such that, at very low concentrations, there is no strong interaction
between polymer molecules, In this region, physical properties change in direct
proportion to the concentration ¢. As the concentration is increased, the increment
in viscosity over that of the solvent increases at a faster rate. Ultimately there may
be a change to a regime in which the viscosity varies as ¢ or even higher powers.
The example given in Fig. 6.5 shows an increase in slope from 1.5 to 4. The
transition is associated with the formation of entanglements, as happens in a melt
above M,. It follows that this polymer in solution must be capable of forming
entanglements, hence the molecular weight must be higher than M, for the strong
concentration-dependence to occur. In this region the solution properties are very
similar to those of the melt, namely strongly viscoelastic.

A useful parameter which has been found helpful when making comparisons
between different polymers in solution is the so-called “reduced concentration”.
This is the product of concentration and ‘intrinsic viscosity’, ¢[n], and is therefore
dimensionless. * Elastic effects achieve prominence when ¢[%] attains a value in the
range 5 to 10, and develop very rapidly with further increases in the parameter,

* Note: in polymer rheology [] usually has the dimensions of volume per unit mass {i.e. a reciprocal
concentration); whereas in suspension rheology, since concentration is expressed as a volume per unit
volume, [n] is dimensionless (see §7.2.3). Of course, the product ¢[7] is always dimensionless.
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Fig. 6.5 Zero-shear viscosity of solutions of polystyrene in benzene showing the change from a 1.5-power
dependence on concentration to a 4-power dependence. 7, is the solvent viscosity (from Vinogradov and
Malkin 1980, p. 187).

It sheuld be understood that the three examples discussed in §6.3 to §6.5 are of
specific rheological behaviour displayed by typical polymer systems; there are a
number of variants. Thus, the details can be strongly influenced by such factors as
molecular-weight distribution, chain branching, polarity, copolymerization, polymer
mixtures (blends), suspended solid particles, solvent—polymer interactions and chain
rigidity (see, for example, Brydson 1981, Vinogradov and Malkin 1980, Cogswell
1981, Nielsen 1977, White 1980, Laun and Schuch 1989). It is not appropriate for us
t0 go into these in any detail, but two variants are worthy of special mention. These
are polymer gels and polymeric liquid crystals,

6.6 Polymer gels

A polymer gel is generally a solution in which the chains are cross-linked by a
more permanent means than mere physical entanglements. The cross-links may be
chemical bonds of the type used to vulcanize or harden rubbers. Alternatively, they
may be crystalline regions linked by chains which pass through more than one of
these regions. The latter process is the same as that which occurs in solid semi-crys-
talline polymers. A rather different form of gel structure is obtained by adding high
concentrations (say 20% v/v or more) of small solid particles such as carbon black
to a polymer melt or concentrated solution. In such systems, the structure is formed
by chains of the particles, although the formation of polymer bridges by adsorption
on adjacent particles is an additional possibility,

A gel can be formed in solution in two ways: either by contacting the cross-lin-
ked solid with a suitable solvent, which is then taken up by the solid by the process
of swelling, or by cross-linking molecules already in solution. Many natural prod-
ucts, such as gelatine, form gels of the latter type.
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Gels may be regarded as ‘soft solids’ with a wide range of elasiic modulus
depending on the extent of cross-linking,

Tt is of interest that the particle-filled polymer gel, although having a high shear
viscosity at low shear rates may have a relatively low extensional viscosity.

The book by Glicksman (1969) contains useful background information on
polymer gels.

6.7 Liquid crystal polymers

Liquid crystals are formed in solutions of polymers which have a rigid backbone.
Rigidity is conferred by introducing bulky groups such as benzene rings into the
backbone structure. As the molecular weight is increased, chain entanglement begins
at a critical value, as with flexible polymers. However, the concentration relation-
ship for polymers above M, is very different. Initially, the viscosity increases rather
rapidly with concentration beyond the entanglement point, but there then occurs a
second critical point beyond which the viscosity decreases markedly. The phenome-
non is shown in Fig. 6.6. The transition is a sharp one. It signals the formation of a
strongly orientated polymer structure. Since orientation can be induced by shear,
the position of the transition moves to lower concentrations as the shear rate
InCreases.

Liguid crystals are also formed in melts of rigid-backbone polymers. The
rheological behaviour of the liquid crystalline state is dependent on the orientation
vecior and its relation to the flow direction. This has led to the prediction of strange
effects and may account for the observation of a negative first normal stress
difference and zero, or negative, die swell in some liquid crystalline polymer melts,
which in other respects are highly elastic.

For further information on this class of materials, the book edited by Chapoy
(1985) is recommended.
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Fig. 6.6 Dependence of viscosity on concentration for solutions of poly(p-benzamide) in dimethyl
acetamide at 20°C. The liquid-crystalline state occurs 1o the right of the maxima in the curves {from
Vinogradov and Malkin 1980, p. 196).
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6.8 Molecular theories

6.8.1 Basic concepts

Viscoelastic phenomena in a polymeric liquid are due, primarily, to intramolecu-
lar forces which arise from the orientation of chemical-bond vectors in the polymer
chains and, in particular, from changes in orientation caused by the deformation of
the liquid. A molecule possesses a minimum-energy state (or rest state), in which the
bond vectors are distributed in essentially a random configuration, and elastic
recovery is a consequence of the return to this state. Therefore, the kinetic theory of
rubber elasticity (see, for example, Treloar 1975) is basic to the physics of polymeric
liquids. The presence of other molecules, whether polymer or solvent, delays the
re-orientation process and gives rise to the viscous component of the rheological
effect.

Starting from these fundamental ideas, molecular theories of polymer liquids
follow two main branches. One branch is entitled bead-spring and the other
network. They will be considered separately, although historically they were devel-
oped concurrently and are still being improved. For detailed treatments the reader is
referred to Tanner (1985) and especially Doi and Edwards (1986) and Bird et al.
(1987(b)).

6.8.2 Bead-spring models: the Rouse—Zimm linear models

In bead-spring models, viscous behaviour is specifically introduced by consider-
ing the molecule to be acted on by frictional drag according to Stokes’ equation (see,
for example, Bird et al. 1987(b)) or more elaborate forms of it. The bead—spring
models, of which there are many, consider the sites of fluid friction to be repre-
sented by small spheres, or beads, which are connected by a length of polymer
chain, which is itself considered to be frictionless. Figure 6.7 illustrates how the
beads are imagined to be distributed along a chain. The chains between beads are
equal in length and are sufficiently long for them to obey Gaussian statistics and
thus for the chain elements to be entropic springs.

_— .
W

—_

—

P—.

Fig. 6.7 The necklace model. Equal lengths of Gaussian chain {above) are represented by equal springs
{below) joined by equal-sized beads which account for the drag experienced in the velocity field.
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Two cases have been considered: the dumbbell models in which two beads are
placed at the extremities of one spring and the more realistic but more complicated
necklace models, in which (N + 1) beads are connected by N equal lengths of
spring. The simple Stokes-drag law was used by Rouse (1953) in a notable paper on
the necklace model. Zimm (1956) extended the theory to account for so-called
hydrodynamic interaction,

The Rouse—Zimm theories apply to conditions of small-amplitude oscillatory
shear flow and hence to linear viscoelastic behaviour (cf. Chapter 3). Specifically,
the Rouse—Zimm treatment leads to linear viscoelastic models which are equivalent
to distributed Maxwell elements, (see Fig. 3.7 (a)) with an interpretation of the
model parameters in terms of molecular characteristics.

In passing, we remark that the constant-viscosity restriction implied in the linear
theories of Rouse and Zimm is relaxed in the Bueche (1954) treatment. In this, shear
thinning is predicted in steady simple shear flow. Specifically, n is predicted to vary
as $ %% This rate of shear-thinning is reasonable for moderately concentrated
polymer solutions but is low compared with most experimental results for con-
centrated solutions and melts. The Bueche treatment is criticized in Bird et al 1987
(b) p 161.

6.8.3 The Giesekus—Bird non-linear models

We turn now to the advanced kinetic theories of principally Giesekus, and Bird
and coworkers (cf. Giesekus 1985, Bird 1985, Bird et al. 1987(b)). It was the
intention of these researchers to develop models which predict non-linear rheologi-
cal effects, not just the linear ones as in the Rouse-Zimm treatment. In order to do
this, it was necessary to use the dumbbell approximation (see Fig. 6.8). At first sight
it seems to be a retrograde step to adopt the dumbbell approximation when the
bead-spring necklace is intuitively a much better model of a real polymer chain. A
major reason for making this step, and for its successful outcome, is that the longer
relaxation-time processes are more influential than the short ones in conferring
viscoelasticity, and the longest such process corresponds to the dumbbell.

The relevant theories lead to constitutive equations of the upper convected
Maxwell and Oldroyd B type (cf. §8.6). Specifically, the steady shear viscosity 7 is a
constant, the first normal stress coefficient ¥, is a positive constant and the second
normal stress coefficieni ¥, is zero (cf. Chapter 4, eqs. 4.2 and 4.3).

Numerous developments of the basic dumbbell model have been made and these
are discussed in detail by Bird et al. (1987(b)). Typical of these is the so-called

5 — o

Fig. 6.8 The dumbbell approximation. The elastic behaviour is represented by a spring and the sites of
the frictional drag are located at the ends of the spring.
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FENE-dumbbell model * which predicts shear-thinning and a first normal stress
coefficient which decays with shear rate. It also predicts stress overshoot in the
start-up of shear flow.

6.8.4 Network models

The essential difference between the kinetic theory of rubber-like elasticity and
the network models of polymer solutions and melts is that the permanent cross-links
between molecules in the rubber are replaced by transient junctions in the network.
The concept of transience is that, at any instant, junctions are sufficiently “perma-
nent” for the network to behave like a rubber but they break after a short lifetime
and reform elsewhere, hence the system is capable of flow. Since the total concentra-
tion of junctions always remains constant, the elastic properties are constant. The
original idea of the transient network was published by Green and Tobolsky (1946).
It was extensively developed by Lodge (1956, 1964) and is often associated with his
name.

In a steady simple-shear flow, the Lodge rubber-like liquid predicis a constant
viscosity 1, a positive (constant) ¥, and zero ¥,. It seems to be a coincidence that
the Lodge theory leads to very similar predictions to the simpler versions of the
Giesekus-Bird theories, especially since the molecular concepts are quite different
in the two cases.

Numerous attempts have been made to modify the network theory by employing
more realistic molecular modelling and sometimes by adding further ad hoc assump-
tions (see, for example, Kaye 1966, Tanner 1969, Acierno et al. 1976, Johnson and
Segalman 1977, Phan-Thien and Tanner 1977, Giesekus 1982, Leonov 1987), These
attempts have been reasonably successful and it is now possible to predict, amongst
other things, a second normal stress coefficient ¥, of the correct form (see, for
example, the predictions for the Johnson-Segalman and Phan-Thien—Tanner mod-
els in Chapter 8).

6.8.5 Reptation models

The entanglement theory of rubber elasticity of Edwards (1967) introduced a new
physical concept which has had an influential impact on later developments in the
molecular theory of polymer systems. The concept is of an equivalence between a
chain constrained by entanglements, and /or cross-links, and a relatively free chain
constrained in a zube and unable to escape through its sides. Figure 6.9 represents
the equivalence pictorially. A related concept for uncrosslinked polymers introduced
by de Gennes (1971) has revolutionized ideas on the mechanism of permanent
deformation, or flow, of the entangled molecules. This concept is that the only way
a molecule can escape from its tube, and hence allow flow to occur, is by diffusion
along the tube. It is a wriggling, snake-like motion and the process has the aptly
descriplive name of repration. The detailed application of these concepts to polymer
systems has been developed by de Gennes (1979), Doi and Edwards (1986) and

* FENE stands for “finitely extensible, non-linear elastic”,
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Fig. 6.9 The Doi—Edwards—de Gennes tube concept can be visualised by first piacing the molecule on a
plane (this page). Neighbouring molecules will intersect this plane at the points (see left-hangd part of the
figure). The nearest points define a tube which prevents mgjor penetration by the molecule (see
right-hand part}.

Curtiss and Bird (see Bird et al. (1987(b)). The Doi-Edwards theory (with the
additional “independent-alignment” assumption) leads to a constitutive equaticon
similar to the so-called KBKZ model (see Chapter 8, eqn. 8.35). However, this
statement simply indicates the broad general form of the constitutive equations
arising from the simpler reptation theories and should be read in conjunction with
the recent papers of Marrucci who has shown the limitations of the independent
alignment assumption (Marrucci and Grizzuti 1986, Marrucci 1986).

There is no doubt that substantial progress has been made in deriving constitu-
tive equations for polymeric liquids using ‘microrheological’ concepts. The inter-
ested reader is referred to the detailed texts of Tanner (1985 Chapter 5), Doi and
Edwards (1986) and Bird et al. {1987(b)) for fuller details.

6.9 The method of reduced variables

In many cases it is important to study the full range of rheological properties for
varying temperature and pressure (and in the case of polymer solutions, concentra-
tion as well). Such a study is facilitated by a suitable *normalization™ procedure,
The aim of such a procedure is to plot experimental results on a pair of axes using
normalized variables, such that a unique curve is obtained whatever the temperature
or pressure (or concentration). The so-called “method of reduced variables” is one
way of accomplishing this. The method is fully described by Ferry (1980 p. 266),
one of its originators, and it will be sufficient here to refer to the *time-temperature
superposition’ principle only, although the additional variables, pressure and con-
centration, are also accommodated in the full method.

The method is basically empirical but is guided by reference to molecular theory.
Time—temperature superposition depends on the principle that all the relaxation
times in a spectrum have the same temperature dependence provided there is no
phase change of the polymer within the temperature range considered. Hence

Tr= 1Ty, (6.1)
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Fig. 6.10 Results of the application of time-temperature superposition to data for an unvulcanized

rubber. Reference temperature Tj, = 298K. Shift factors @, were determined empirically by horizontal
adjustment of individual curves {from Whorlow 1980, p. 417), Note that p is the density.

where suffix T refers to temperature T and suffix 0 refers to the reference
temperature T;,.

An example where the empirical shift process has been used for an unvulcanized
rubber is shown in Figs. 6.10 and 6.11. The curves of G’ and G obtained at
different temperatures (and not shown here) have been successfully reduced to two
single composite curves by introducing a common temperature of 298K, The
procedure in this case has resulted in values of G’ and G” covering some 16
decades of frequency at 298K.

Empirically it is found that

Inar=—c(T-T)/(e;+ T—-T), (6.2)
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Fig. 6.11 Variation of shift factor a4 for the rubber of Fig. 6.10 compared with the curve (solid line)
predicted by the WLF equation (T, = 248K, ¢; = 8.86 and ¢, =101.6K).
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in which ¢,, ¢, and T, (a reference temperature) are constants. This form of the ar
function has become known as the Williams—Landel-Ferry or WLF equation.

A test of the WLF equation is given in Fig. 6.11 which contains a graph of the
shift factors used to produce Fig. 6.10.

For measurements of shear stress and normal stress in steady shear flow, the
same principles apply with the reduced shear rate becoming ar¥.

In the case of a given polymer solution at varying concentration and temperature,
it is often possible to construct a master curve by plotting /7 against 1.y, where
n, is the relevant zero-shear viscosity. Examples of such a procedure are provided
by Vinogradov and Malkin (1980, p. 207) who also discuss possible extensions and
limitations of the procedure.

6.10 Empirical relations between rheological functions

We have already referred to the Cox—Merz rule which provides a useful empirical
correlation between the steady shear viscosity function 5(y) and the dynamic data
(7'(w) and G’(w)) in the case of polymeric liquids (see §4.5). A corresponding
correlation between the first normal stress difference Ny(¥) and the dynamic data
has also been attempted (see, for example, Laun 1986, Al-Hadithi et al. 1988).
Figure 6.1 for a concentrated polymer solution contains the relevant correlation
based on the empirical formula of Al-Hadithi et al. (1988), viz.

(ne+ )G’ )m_ (6.3)

20(q’)’

These authors proposed (as the Cox-Merz equivalent) that N,/2 should be the
same function of ¥ as |G, | is of frequency w.

Another useful empiricism is to plot the first normal stress difference N, as a
function of shear stress o on logarithmic scales. Often, a master curve is obtained
which is independent of temperature. The data usually lie on a reasonably straight
line even in the shear-thinning region. Figure 6.12 contains an example of this
procedure for a polymer-thickened oil (see also Fig. 4.4).

| G. | zG’(1+

6.11 Practical applications

6.11.1 Polymer processing

Nowadays there is no need to emphasize the importance of plastics to modern
life: it is regarded as self evident. Polymers are now used as primary materials of
construction and have become indispensible.

Specialized texts on rheological aspects of polymer processing have been written
by Han (1976), Middleman (1977), Cogswell (1981) and Pearson (1985). Further,
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Fig. 6.12 Plot of N, against o for a polymer-thickened oil. The data for different temperatures fall
approximately on the same straight line. The slope is 1.59.

many standard rheological texts have important chapters on the subject (see, for
example, Tanner 1985).

In the main, processing is carried out on the melt, although in some cases, such as
in the formation of films and fibre of heat-sensitive polymers, a solution is
processed. The extruder is the most important melt processing machine and it
incorporates a number of sub-processes, such as melting and mixing, prior to that of
forming into rods, tubes or films. Extruders are also attached to moulds if the
required final shape is more complicated. The process is then ecither injection
moulding for “solid” objects or blow moulding when an extrudate sheet is forced by
air pressure against a cooled mould surface,

Extruded films and fibres are stretched to achieve their final thickmess and
molecular orientation. The process of drawing-down film extruded in the form of a
tube or bubble is called film blowing, whilst the drawing-down of fibre is called
spinning,

Pearson (1985) points out that in many processes the molten polymer can be
considered to be an inelastic non-Newtonian liquid and the power-law model is
often adequate in process modelling. This view is justified by the fact that many
processing flows are characterized by a narrow dimension normal to the direction of
flow and the so-called “lubrication approximation” can be employed (see also
Tanner 1985). Under these conditions, it is not difficult to argue that shear viscosity
is the dominant rheological influence.

However, there are some important processing situations, e.g. film blowing,
spinning and flow through a contraction, where extensional viscosity is clearly the
rheological function of importance (cf. Chapter 5). Not surprisingly, therefore, the
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measurement of the extensional viscosity of polymeric liquids is viewed as a study of
industrial importance.

Melt flow instabilities such as “shark-skin” and ‘melt fracture’ can occur in
extrusion and these effectively place upper bounds on operating conditions. A
review of such instabilities is provided by Petrie and Denn (1976). There is recent
evidence that the materials used to construct processing equipment can have a
significant effect on the critical conditions for the onset of melt flow instabilities
thus indicating that interfacial as well as viscoelastic effects are important (Rama-
murthy 1986).

6.11.2 Polymers in engine lubricants

For more than 40 years, polymers have been used to make the so-called
multigrade oils. The motivation is to reduce the large variation of viscosity with
temperature and to thereby maintain good hydrodynamic lubrication at high
temperatures, without incurring excessive frictional losses at low temperatures. The
viscosity Ievel of an automotive oil is specified by a grade number. By the use of
polymer, it has become possible to formulate oils which meet the requirements of
more than one grade, something which is impossible with ordinary lubricating-oil
fractions. Hence the term “multigrade”. The polymer additives are known as
Viscosity-Index (or VI) improvers.

The thickening effect of the VI improvers depends on the grades required, but in
modern oils it can amount to more than a tripling of the base-oil viscosity. The
blends show shear-thinning behaviour, which does not become significant until
shear rates exceed about 10° s, Since engine bearings can operate at shear rates
two orders of magnitude higher than this, shear-thinning must be accommodated in
the design of a lubricant.

Normal stresses and other viscoelastic effects can be measured in multigrade oils
and evidence is accumulating that viscoelasticity, together with the increased viscos-
ity, may help in carrying the bearing load. These and many other aspects of the
rheology of lubrication were reviewed by Hutton (1980) although, at that time,
viscoelasticity was thought to have a relatively minor role to play in journal
bearings.

6.11.3 Enhanced oil recovery

Unlike a water reservoir, a crude oil reservoir is located in the pores of
sedimentary rock and the extraction of oil is not easy. A newly tapped deposit is
held under earth pressure which will drive a proportion of the oil to the receiving
bore holes. When this begins to fail, the secondary recovery process is initiated. This
involves pumping water down holes set in a ring around the field. The water sweeps
crude before it, but, since the water has the lower viscosity, the water /oil interface is
unstable, When the instability occurs, water bypasses the oil in the form of
“fingers” and reaches the receiving well first: any variation in the porosity of the
oil-bearing strata can exacerbate the fingering effect. Oil wells which have been
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abandoned because of fingering may still contain as much as 50% of the original
deposit. Hence, tertiary or enhanced o0il recovery (EOR) is potentially important.

Many proposed EOR methods are being researched. One method is known as
polymer flooding. The principle is to stabilize the water/oil interface by using an
aqueous polymer solution as the displacement fluid. Candidates for use in this
connection are the relatively rigid Xanthan gum and the more flexible polyacryla-
mide. We have already shown in §3.5 that aqueous solutions of these polymers can
behave similarly in shear flow but in a qualitatively different fashion in extensional
flow. This may be important in the relatively severe conditions near the well bore
(see, for example, Walters and Jones 1988).

6.11.4 Polymers as thickeners of water-based products

Many consumer products require the use of a polymer thickener. This might be
for some technical reason such as the suspension of fine particles: typical are kaolin
in medicines and abrasive particles in liquid abrasive cleaners. Although the amount -
of thickening is of paramount importance, the elasticity and the extensional viscos-
ity are also relevant. The visual presence of “wobbliness” (which indicates high
elasticity}) and “stringiness” (which indicates a high extensional viscosity) are
sometimes unacceptable to the consumer. It is of interest to note that polyacryla-
mide, one of the polymers of Figs. 5.18 and 5.19, is unacceptable in this respect
because it forms solutions which have high elasticity and a high extensional
viscosity. On the other hand the other polymer, Xanthan gum, forms solutions
which are not so highly elastic and have a much lower extensional viscosity.
Consequently, on the basis of equal shear viscosity, Xanthan gum solutions are not
wobbly or stringy in comparison with polyacrylamide solutions. Toothpastes and
paints require the use of such “inelastic” polymer thickeners, whilst the food
industry relies heavily on such materials for thickening sauces and soups. Polysac-
charide-type polymers and natural gums are often used for this purpose {Glicksman
1969).



CHAPTER 7

RHEOLOGY OF SUSPENSIONS

7.1 Introduction

The rheology of suspensions has been the subject of serious research for many
years, mainly because of its obvious importance in a wide range o industrial
applications (see, for example, Barnes 1981). Suspensions include cement, paint,
printing inks, coa dlurries, drilling muds and many proprietory products like
medicines, liquid abrasive cleaners and foodstuffs. Examples of suspensions where
the particles are deformable range from emulsions to blood.

7.1.1 The general form o the viscosity curve for suspensions

The general viscosity /shear rate curvefor all suspensionsis shown schematically
in Fig. 7.1. We could anticipate most of this behaviour from the general discussion
of Chapter 2. The first Newtonian plateau at low shear rate is followed by the
power-law shear-thinning region and then by a flattening-out to the upper (second)
Newtonian plateau. At some point, usualy in this upper Newtonian region, there
can be an increase in viscosity for suspensions of solid particles, given the ap-
propriate conditions. In certain situations the first Newtonian plateau is sometimes
s0 high as to be inaccessible to measurement. In such cases the low-shear rate
behaviour is often described by an apparent yield stress.

The factors controlling the details of the general flow curve in particular cases
will now be considered. One point worth stressing hereis that the relevant measure
d the amount of material suspended in the liquid is that fraction of space of the

Log viscosity

Log shear rote

Fig. 7.1 Schematicrepresentation of the flow curve of a concentrated suspension.
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total suspension that is occupied by the suspended material. We call this the phase
volume ¢. This is the volume-per-volume fraction, and not the weight-per-weight
fraction that is often used in defining concentration. The reason why phase volume
is so important is that the rheology depends to a great extent on the hydrodynamic
forces which act on the surface of particles or aggregates of particles, generally
irrespective o the particle density.

7.1.2 Summary o the forces acting on particles suspended in a liquid

Three kinds of forces coexist to various degrees in flowing suspensions. First,
there are those of colloidal origin that arise from interactions between the particles.
These are controlled by properties of the fluid such as polarisability, but not by
viscosity. These forces can result in an overall repulsion or attraction between the
particles. The former can arise, for instance, from like electrostatic charges or from
entropic repulsion of polymeric or surfactant material present on the particle
surfaces. The latter can arise from the ever-present London-van der Waals attrac-
tion between the particles, or from electrostatic attraction between unlike chargeson
different parts of the particle (e.g. edge/face attraction between clay particles). If
the net result of al the forcesis an attraction, the particles flocculate, whilst overall
repulsion means that they remain separate (i.e. dispersed or deflocculated).

Each colloidal force has a different rate of decrease from the surface o the
particle and the estimation of the overall result of the combination of a number of
these forces operating together can be quite complicated. Figure 7.2 shows the form
of some singleand combined forces(see Hunter 1987 for a more detailed account of
colloidal forces).

Secondly, we must consider the ever-present Brownian (thermal) randomising
force. For particlesd all shapes, this constant randomisation influences the form of
the radia distribution function (i.e. the spatial arrangement of particles as seen from
the centre of any one particle), whereas for non-spherical particles, spatial orienta-
tion is aso being randomised. The Brownian forceis of course strongly size-depen-
dent, so that below a particlesize of 1 pm it has a big influence. This force ensures
that the particles are in constant movement and any description of the spatial
distribution of the particlesis a time average.

Thirdly, we must take into account the viscous forces acting on the particles. The
viscous forces are proportional to the local velocity difference between the particle
and the surrounding fluid. Hence the way these affect the suspension viscosity
enters via the viscosity of the continuous phase which then scales all such interac-
tions. Thus an important parameter is the 'relative viscosity' 7., defined as the
suspension viscosity divided by the continuous-phase viscosity.

Clearly, the rheology measured macroscopically is strongly dependent on these
microstructural considerations. For instance, the presence of isolated particles
means deviation o the fluid flow lines and hence an increased viscosity. At higher
concentrations, more resistance arises because particles have to move out of each
other's way. When particles form flocculated structures, even more resistance is
encountered because the flocs, by enclosing and thus immobilising some o the
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Fig. 7.2 Examples of the typical interaction Forces between a pair of sub-micron particles: (a) van der
Waals attraction (omnipresent); (b) Steric repulsion due to adsorbed macromolecules; (c) Electrostatic
repulsion due to the presenceof like charges on the particlesand a dielectric medium; (d) A combination
of (a) and (b); (e) A combination of (a) and (c); (f) A combination of (a), (b) and (c).

continuous phase, have the effect of increasing the apparent phase volume, thus
again giving a higher than expected viscosity.

7.1.3 Rest structures

When particles are introduced into aliquid at rest they usually assume a state of
thermodynamic equilibrium which, when the Brownian motion dominates, corre-
sponds to a random disordered state.

When colloidal forces dominate, the particles form structures whose forms
depend on whether the overal forces are attractive or repulsive. When they are
attractive they form aggregates and when they are repulsive they form a
pseudo-lattice.

The particular shape of aggregates can vary from near-spherical flocs to strings.
The latter is sometimes referred to as a string-of-pearls structure. Pigment disper-
sions form flocs and silica dispersions can form the string structures.

Pseudo-lattices are formed by overall repulsion, for instance in systems o
particles carrying electrostatic charges of the same sign dispersed in a polar
continuous phase. The particles then take up positions as far from each other as
possible. If the charge on such particlesis very large, movement o the particles is
severdly restricted and the structure can be visualised as a pseudo-crystal: if the
lattice spacing is comparable to optical wavelengths, interference effects occur and
the suspension displays irridescence.
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Any d the structures mentioned above can be modified by the adsorbtion of
surfactant materials onto the surface of the particles. The structures formed by
electrostatic charges can be modified by the addition of electrolytes.

The structures discussed so far are formed by near-spherical particles. However,
if the basic particleisitself anisotropic, very complicated structures can be formed.
One example is an aqueous suspension of bentonite clay: the basic particle is
plate-like and it carries charges of opposite sign on the faces and edges. The
aggregated structure is then like a house of cards with edges attracted to faces.
Another exampleisa suspension o soap crystals. Soap can be made to crystallizein
the form of long ribbons, which then intertwine to form an entangled structure, as
in lubricating grease.

A useful method for judging the importance of colloidal forces has been derived
by Woodcock (1985). It gives the average distance # between first neighbours in
terms d the particle sze d and the volume fraction ¢ as follows:

§=[(317¢+§)%-1} (7.1)

This expression is plotted in Fig. 7.3 for four sizes of particle. The diagram also
shows the range of action of typica colloidal forces. This diagram indicates for
example that, for a suspension with a ¢ o 0.2 and particle size 0.05 pm, electro-
static interactions will be very important. Thiswill not be soif particles are larger or
if the concentration is lower.
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Fig. 7.3 Average interparticle separation as a function of concentration for monodisperse spheres
(according to eqn. (7.1)) plotted for four particlesizes. The horizontal lines show twice the distance over
which various inter particle forces typically operate: (A) Electrostatic forces in aqueous suspensionswith
low salt levels; (B) Steric forces originating from adsorbed macromolecules; (C) Steric forces originating
from adsorbed nonionic deter gents.
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7.1.4 Flow-induced structures

We shall consider first, relatively unaggregated systems in which the Brownian
forces dominate. When a concentrated suspension of this type flows at very low
shear rates, the particles necessarily have to move around each other or ' bounce
off' each other for overal flow to occur. This involves a large resistance and the
resulting viscodity is high. On the other hand, the distribution o particles remains
essentially undisturbed because the effect o Brownian motion dominates the shear
motion and restores the randomness o the rest-state distribution. The viscosity
remains essentially constant. At dightly higher shear rates, the imposed velocity
gradient induces an orientation of the particle structure, which is not restored by the
Brownian motion. However this orientation enables particles to move past each
other more freely than at very low shear rates and hence the viscosity is lower. At
even higher shear rates, the structure is so grosdy orientated that the particles form
layers separated by clear layers of the continuous phase. The viscosity is then at its
minimum value. The suspension is shear-thinning. The existence o particle layers
has been confirmed by light diffraction. When shearing is stopped the flow-induced
layered structure gradually disappears.

If the shear stress is increased above a critical value, the layers disrupt and
gradually disappear. Hence, the viscosity begins to rise again and it aso increases
with time of shearing.

Flow-induced structures can also be formed by the more complicated clay and
soap suspensions mentioned earlier. In these cases, flow causes the plates and
ribbons to aign in the direction of flow. This orientation can be detected by optical
techniques.

Examples o increased flocculation caused by flow are aso known (see, for
example, Cheng 1973).

7.2 The viscosity of suspensionsof solid particlesin Newtonian liquids

7.2.1 Dilute dispersed suspensions

A considerable amount o progress has been made in predicting the viscosity of
dilute suspensions (10% and less phase volume). All studies essentially extend the
work o Einstein (1906, 1911) on spheres, so that particle shape, charge and the
small amount of hydrodynamicinteraction arising when any one particle comesinto
the vicinity of another can al be taken into account.

Einstein showed that single particles increased the viscosity o a liquid as a
simple function of their phase volume, according to the formula

n=n,1+2.59¢), (7.2)

where 7 is the viscosity of the suspension and 7, is the viscosity of the suspending
medium.
We notice immediately that in egn. (7.2) there is no effect of particle size, nor o
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particle position, because the theory neglects the effects of other particles. When
interactions between particles are included, the situation becomes more com-
plicated. The presenced other particlesis accounted for by higher-order termsin ¢.
However the only tractable theory is for extensional flow, because only in this type
of flow can the relative position of the particles be accounted for anaytically.
Batchelor (1977) gives the viscosity in this case as

n=1n(1+2.5¢+6.2¢%), (7.3)

where the viscosities must how to be interpreted as extensional viscosities (Chapter
5).

A number o experimental determinations of the term multiplying ¢? for shear
flows have been made, but the range o values so obtained is large (varying from
about 5 to 15).

A great deal of work has been done and many reviews written (see, for example,
Barnes 1981) on dilute suspensions, but almost al conclude that, apart from
providing some limiting condition for the concentrated case, the work is of little
relevance to suspensions of industrial importance. Dilute suspension theory covers
the range below 10% phase volume, and this accounts for no more than a 40%
increasein viscosity over the continuous phase.

7.2.2 Maximum packing fraction

The influence of particle concentration on the viscosity o the concentrated
suspensionsis best determined in relation to the maximum packing fraction. There
must come a time, as more and more particles are added, when suspensions ' jam
up", giving continuous three-dimensional contact throughout the suspension, thus
making flow impossible, i.e. the viscosity tends to infinity. The particular phase
volume at which this happens is caled the maximum packing fraction ¢,,, and its
value will depend on the arrangement of the particles. Examples are given in Table
7.1. Maximum packing fractions thus range from approximately 0.5 to 0.75 even for
monodi sperse spheres.

The maximum packing fraction, as wel as being controlled by the type of
packing, is very senditive to particle-size distribution and particle shape (see, for

TABLE 7.1
The maximum packing fraction of various arrangementsof monodisper se spheres

Arrangement Maximum packing fraction
Simple cubic 0.52

Minimum thermodynamically stable configuration 0.548

Hexagonally packed sheetsjust touching 0.605

Random close packing 0.637

Body-centred cubic packing 0.68

Face-centred cubic/ hexagonal close packed 0.74
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example, Wakeman 1975). Broader particle-size distributions have higher values of
¢, because the smaler particles fit into the gaps between the bigger ones. On the
other hand, nonspherical particles lead to poorer space-fillingand hence lower ¢,,.
Particle flocculation can aso lead to a low maximum packing fraction because, in
general, the flocs themselvesare not close-packed.

From the above considerations, we see that the ratio ¢/¢, iS a relevant
normalized concentration.

7.2.3 Concentrated Newtonian suspensions

The situation for concentrated suspensions, where we expect higher-order terms
than ¢ to beimportant, is even more difficult to analyse from a theoretical point of
view. The only methods available to tackle the problem are to introduce a technique
for averaging the influence of neighbouring particles or alternatively to simulate the
situation using computer modelling.

One recent development, based on an averaging technique, is that of Bal and
Richmond (1980) who essentially start from the assumption that the effect of al the
particlesin a concentrated suspension is the sum of the effects of particles added
sequentially. Hence the Einstein equation can be written in a differential form

dn = (57/2) de, (7.4)

wheredy is theincrement of viscosity on the addition of asmall increment of phase
volume d¢ to a suspension of viscosity n. The viscosity of the final suspension is
then obtained by integrating the phase volume between 0 and ¢, for which the
viscosity is n, and 7, respectively. Then

1 =", exp(5¢,2). (7.5)

Bdl and Richmond point out that this omits the correlations between spheres
due to their finite size. This means that when a particle is added to a relatively
concentrated suspension it requires more space than its volume d¢, due to packing
difficulties. Therefored¢ hasto be replaced by d¢/(1 — K¢), where K accounts for
the so-called " crowding'™ effect. Integration now yields

/CK) (7.6)

n=1,(1-K¢)
From this equation we see that the viscosity becomes infinite when ¢ =1/K.
Therefore, we can identify 1/K with the maximum packing fraction ¢.,. Bdl and
Richmond's expression is effectively identical to that of Krieger and Dougherty
(1959). Krieger and Dougherty's theory also states that, in the general case, the 5/2
factor could be replaced by the intrinsic viscosity [n]. * The value of 5/2 is the

* Note: in suspension rheology [4] is dimensionless, since the phase volume is also dimensionless(see
eqn. (7.2)); whereas in polymer rheology the concentration is usually expressed as a mass per unit
volume, thereby giving {n] the dimensions of a reciprocal concentration (see § 6.5).
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Fig. 7.4 Effect of binary particle-size fraction on suspension viscosity, with total % phase volume as
parameter. The particle-sizeratio is5:1. P — Q illustrates the fiftyfold reduction in viscosity when a 60%
v/v suspension is changed from a mono- to a bimodal (50/50) mixture. P— S illustrates the 15%
increase in phase volume possible for the same viscosity when a suspension is changed from mono- to
bimodal .

intrinsic viscosity for an ideal dilute suspension of spherical particles. Replacing it
by [q] dlows particles of any shape to be accounted for.
The Krieger-Dougherty equation is

n=n,(1=¢/¢n) " (7.7)

Equations 7.6 and 7.7 both reduce to the Einstein equation (egn. (7.2)) when ¢ is
small.

The values o ¢, obtained from the empirical use of eqgn. (7.7) are strongly
dependent on the particle-size distribution. Thus, ¢,, increases with increasing
polydispersity (i.e. the spread of sizes). This is illustrated by Fig. 7.4 where the
viscositiesof mixtures of large and small particles are plotted as a function of the
total phase volume. The large reduction in viscosity seen near a fraction of 0.6 of
large particlesis known as the Farris effect. The effect is very large at a total phase
volume of more than 50%. Mixing particle sizes thus alows the viscosity to be
reduced whilst maintaining the same phase volume, or aternatively, the phase
volume to be increased whilst maintaining the same viscosity. Similar effects can
also be shown for tertiary mixtures (cf. Fig. 7.5). In the example shown in Fig. 7.5
the minimum relative viscosity is approximately 25 for the optimum tertiary mixture
and is over 30 for the binary mixture. All these effects can be predicted using egn.
(7.7) by assuming, for instance, that the small particles thicken the continuous phase
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Fig. 7.5 Effect of particle-size distribution on trimodal suspension viscosity. Contours show values of the
relative viscosity at 65% total solids (from the theoretical relationship of Farris (1968).

and the next-size-up particles then thicken this phase; the result for a binary
mixture being

1=n0,(1=61/Sa1) (1 = G/ bmy) I (7.8)

Most suspensions of industrial interest have a continuous distribution of particle
sizes which often fit some empirical mathematical expression. However no informa-
tion is available in the rheological literature on how the parameters of such a fit
control ¢,,. Each system has therefore to be measured and ¢,, found by nonlinear
curve fitting. Once ¢,,, isfound for any practical suspension, it is a useful parameter
to assess the effect on viscosity of changing the dispersed phase concentration or the
continuous phase viscosity.

Thus far, we have concentrated on the effect of spherical particles on the
viscosity of suspensions. However, particle asymmetry has a strong effect on the
intrinsic viscosity and maximum packing fraction, and hence on the
concentration /viscosity relationship. A number of studies have shown that any
deviation from spherical particles means an increase in viscosity for the same phase
volume. Figures 7.6 and 7.7 illustrate this point. It will also be seen that, generally
speaking, rods have a greater effect than discsin increasing the viscosity. Thisisin
accordance with theory, at least as far as it goes for dilute suspensions. Barnes
(1981) provides simple empiricisms for the effect of very large axial ratio on the
intrinsic viscosity [n]. These are

discs: [1] = 3 (axial ratio) /10, (7.8a)

rods: [1] =7 [(axial ratio)*] /100. (7.8b)
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Fig. 7.7 Dependence o the relative viscosity of glass fibre suspensionsd various length /diameter ratios
(L /D) (cf. Giesekus 1983). (aaa) spheres, (Q00) L/D =7; (vwV) L/D =14; (Om)L/D =21 (see
Table 7.2).

Table 7.2 gives the values of [n] and ¢,, obtained by fitting the results of a
number of experimental investigations on suspensions of asymmetric particles using
egn. (7.7). The trend to higher [n] and lower ¢,,, with increasing asymmetry is clearly
seen, but the product of the two terms changes little. This fact has practical value in
making estimates of the viscosity of a wide variety of suspensions. The values of [5]
are qualitatively in line with the predictions of egns. (7.8a) and (7.8b).
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TABLE 7.2
The values of [7] and ¢, for a number of suspensions of asymmetric particles, obtained by fitting
experimental data to egn. (7.7)

System [n] m [(]dm Reference
Spheres (submicron) 2.7 0.71 1.92 de Kruif et al. (1985)
Spheres (40 pm) 3.28 0.61 2,00 Giesekus (1983)
Ground gypsum 325 0.69 224 Turian and Yuan (1977)
Titanium dioxide 5.0 0.55 2.77 Turian and Y uan (1977)
Laterite 9.0 0.35 315 Turian and Y uan (1977)
Glass rods 9.25 0.268 248 Clarke (1967)

(30 700 pm)
Glass plates 9.87 0.382 3.77 Clarke (1967)

(100 400 pm)
Quartz grains 5.8 0.371 2.15 Clarke (1967)

(53-76 pm)
Glassfibres:

axid ratio-7 38 0.374 1.42 Giesekus (1983)

axial ratio-14 5.03 0.26 1.31 Giesekus (1983)

axial ratio-21 6.0 0.233 1.40 Giesekus (1983)

7.2.4 Concentrated shear-thinning suspensions

Although the theory described above (see eqn. (7.6)) was derived for the spheri-
cally symmetrical radia distribution function, i.e. the very low shear rate case, it has
been found to work surprisingly wel over a range of shear rates for which the
structure is anistropic. It accommodates these situations by allowing [n] and ¢,, to
vary with shear rate, thus accounting for shear-thinning by the fact that the flow
brings about a more favourable arrangement of particles. The tendency to form
two-dimensional structures rather than three is one such favourable rearrangement.

Considering first the viscosity /phase volume relationships at very low and very
high shear rates, it is found that they both fit the Krieger-Dougherty equation.
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Fig. 7.8 Relative viscosity versus phase volume for monodisperse latices. Data points are those of Krieger
(1972) and de Kruif et al. (1985) combined. The upper line relates to the zero shear-rate asymptotic
relative viscosity, and is the best fit to the Krieger—Dougherty eq. (7.7) with ¢,, = 0.632 and [n] = 3.133.
The lower line relates to the high shear-rate asymptotic value of relative viscosity and is the best fit to
eqn. (7.7), with ¢, = 0.708 and [#] = 2.710.
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Combining data from Krieger (1972) and de Kruif et al. (1985) (Fig. 7.8) the values
of ¢,, and [#n] pertinent to the two situations are

¢n(7—0) =0.632, [n](y—0) =313,
Om(¥ = 00) =0.708, [n](¥ = ) =2.71

Secondly, a number of workers have found that not only can viscosity be related
to phase volume at the extremes of shear rate, but at intermediate values as well.
However, it is usually necessary in this case to correlate values of viscosity measured
at the same shear stress, not shear rate.

A further reduction of data is possible following the suggestion of Krieger (1972).
He recognised that although ¢,, and [5] are stress-dependent, they are independent
of particle size. In order to relate the viscosity of different particle-size suspensions,
he suggested that, instead of shear rate, a new variable be used, namely

P, =6oa’/kT, (7.9)

where a is the particle radius, o the shear stress and kT the usual unit of thermal
energy.

Krieger was able to show that for noninteracting suspensions, the viscosity /shear
stress curves for sub-micron suspensions are reducible to a single curve (Fig. 7.9)
whatever the particle size, temperature and continuous phase viscosity. The " Krieger
variable” is dimensionless and is in fact a modified Péclet number *. Krieger
realised that the viscosity of the suspension is more relevant than that of the
continuous phase in accounting for concentrated suspensions. The shape of the
curve of viscosity versus P, in most cases follows the empirical Ellis model:

s 1
1T =, (7.10)
Mo=T. 1+b(P,)

where b and p are dimensionless quantities (see §2.3.2 and the footnote on p. 18).
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Fig. 7.9 Composite curve of relative viscosity versus modified Péclet number (see eqn. (7.9)). Points are
for 0.1-0.5 pm latex particles dispersed in two solvents; the solid line is for the same-sized particles
dispersed in water; the volume fraction is 0.50 (reproduced from Krieger 1972).

* The Péclet number is the ratio of the viscous force experienced by a particle to the Brownian force.
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7.2.5 Practical consequences o the effect of phase volume

I Weighing errors

An examination o eqgn. (7.7) will show that, at phase volumes less than about
30% concentration, the viscosity changes dowly with concentration, and the viscos-
ties at very low and very high shear rates, respectively, are essentially the same, i.e.
dilute suspensions are basically Newtonian. However, at values of ¢ around 0.5,
small changesin either ¢ or ¢,, give large changesin viscosity and alter the degree
of shear-thinning. Thus, small errors in the weighing involved in the incorporation
of the particles making up the suspension can give very large variations in viscosity,
(see, for example, Fig. 7.10). Also, as is often the casein polymer latices after their
manufacture, the absorption of small amounts o the suspending phase into the
suspended phase can cause large changes in the viscosity of concentrated suspen-
sions. Even hdf of one percent lost from the continuous phase to the suspended
phase means an increasein the phase volume of one percent, which can, in the case
o high phase volume, lead to a doubling or more o the viscosity! When it is
realised that thisis equivalent to the particle size increasing by about 0.2%, and that
particle sze measurement techniques are nowhere near able to detect such small
changes, we see that viscosity is a very sensitive variable in concentrated suspen-
sions.

11 Effect of phase separation

Any sedimentation or ‘creaming’ o the particlesin a viscometer will result in an
increase in the indicated viscosity. At phase volumes above about 0.5 this effect is
extremely pronounced.

111 Wall effect
Y et another factor which must be taken into account in rheometry, as well asin
industrial situations, is known as the ' wall effect™. This term covers the phenomena
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Fig. 7.10 Relative viscosity versus nominal phase volume showing the effect of a 1% error in phase
volume.
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which lead to a reduction in concentration of a suspension adjacent to the solid wall
of the flow channel. One such phenomenon arises from the geometric impossibility
of arranging particles near a wall in the same way as they are arranged in the bulk.
Another is a particle migration from regions of high shear rhte to regions o low
shear rate. The hydrodynamic redistribution of particles demonstrated by Segré and
Silberberg (1962) is yet another.

A number o approaches have been attempted to account for the wall depletion.
Most use the concept of alayer of continuous phase only at thewall and the normal
dispersion everywhere else, with the thickness of the depleted layer being of the
order of theradius of the particles.

The result o the wall effect in tube viscometersis a reduction in the measured
viscosity, the reduction increasing as the tube radius is decreased. Figure 7.11
illustrates these effects for lubricating greases.

7.2.6 Shear-thickening of concentrated suspensions

Given the correct conditions, al concentrated suspensions of non-aggregating
solid particleswill show shear-thickening. The particular circumstances and severity
of shear-thickening will depend on the phase volume, the particle-size distribution
and the continuous phase viscosity. The region of shear-thickening usually follows
that of the shear-thinning brought about by two-dimensional layering. The layered
arrangement is unstable, and is disrupted above a critical shear stress. The ensuing
random arrangement increases the viscosity. The effect has been studied using an
optical diffraction system (Hoffman 1972). The result in terms of viscosity /shear
rate for arange of particle concentrations is shown in Fig. 7.12.

A number o studies have shown that the critical shear rate for transition to
shear-thickening varies little with phase volume when the phase volumeis near 0.50.
However, at phase volumes much higher than this, the critical shear rate decreases,
whilst at phase volumes significantly below 0.5, the opposite is true (see Fig. 7.13).
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Fig. 7.11 (a) and (b): Viscosity measurements for greases measured in axial flow between parallel
cylinders(plunger viscometer) using variousannular gaps. Gap,/mm: (1) 0.624; (2) 0.199; (3)0.042. The
viscometer-size effect disappears at higher shear rates away from the"yield stress' region. (Bramhall &
Hutton 1960).
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Fig. 7.12 Schematic representation of viscosity versus shear rate for shear-thickening systems, with phase
volume as parameter (cf. Barnes, 1989).
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Fig. 7.13 Schematic representation of the dependence of the critica shear rate for the onset of
shear-thickening ¥, as a function of the phase volume of the dispersed phase ¢.
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Fig. 7.14 The power-law index »n for the shear-thickening region of starch suspensions (after Griskey and
Green 1971).



130 Rheology of suspensions [Chap.7

103
n
r u
- ne
T 103+ ] B
N | | [ ]
[ ] ]
I s L%
@ nl =
ot .* h L
é 1 1] -
s I "
B 1L
L0 . .
T [
S L »
,0-2 1 1 1
1072 107 10° 10’ 102

Particle size, d/um
Fig. 7.15 Shear rate for the onset of shear-thickening ¥, versus particle size for suspensions with phase
volumes around 0.5 (Barnes, 1989).

The levd and slope o the viscosity/shear rate curve above the transition
increases with increase in particle concentration (see Figs. 7.12 and 7.14). Evidence
is accumulating that the viscosity decreasesagain at very high shear rates, although
experiments are difficult to carry out at very high phase volume due to flow
instability. The ultimate decreaseis readily observed at lower phase volume.

For any phase volume around 0.50, it is found that the effect of particle size on
the value of the critical shear rate is quite large. In fact, it is approximately
proportional to the inverse of the square of the particle size (see Fig. 7.15). The
viscosity of the continuous phase is aso very important, and an increase in this
viscosity decreases the critical shear rate. This reflects the greater relevance of shear
stress (rather than shear rate) for the onset of shear-thickening, (see Fig. 7.16).
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Fig. 7.16 Envelope of flow curves for laticesdispersed in various solvents whose viscositiesvary from 18
mPa.s to 14 Pa.s. (Redrawn from Hoffman 1972.)
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Fig. 7.17 (a) Viscosity of clays A and B at different ratios asa function of shear rate at a solids content of
44% by volume (67%by weight). Clay A 9 pm, clay B 0.7 pm. (Alince and Lepoutre 1983); (b) Viscosity
of calcium carbonate blends at 48% solids content by volume (71.4% by weight) as a function of shear
rate. Clay A 12 um, clay B 0.65 pm. (Alince and Lepoutre 1983); (c) Effect of particle-size distribution.
(Redrawn from Williams et al. 1979).

The severity of shear-thickeningis often alleviated by widening the particle-size
distribution (see Fig. 7.17).

7.3 The colloidal contribution to viscosity

7.3.1 Overall repulsion between particles

Overdl repulsion between the particlesd a suspension is created if the particles
carry electrostatic charges o the same sign. The particles then take up positions as
far from one another as possible. For flow to occur, particles have to be forced out
o their equilibrium positions and induced to move against the eectric fields o
neighbouring particles into nearby vacancies in the imperfect lattice. Goodwin
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Fig. 7.18 Particle size versus viscosity for a suspension of charged particles, for various particle phase
volumesand charge. The viscosity is the sum of the two contributions given by egns. (7.7) and (7.11). The
value o E* used here is the difference in potential energy between the particle rest-state and the
maximum potential it experiences as it "'jumps'” to the next rest-state site. The particle arrangement is
assumed to be face-centred cubic. The charge on the particle is characterised by the value of « whichis

the inverse of the double-layer thickness. This is a measure of the distance over which the electrostatic
potential acts, measured from the particle surface.

(1987) has given the following equation to evaluate the extra contribution of
repulsion to the zero shear-rate viscosity over and above the usua
Krieger—Dougherty contribution:

An=% exp(E*/kT), (7.11)

where h is Planck’s constant, b is the centre-to-centre particle separation and E* is
the activation energy calculated for self-diffusion.

Thisexpression predicts very large (but finite) viscositiescompared to the viscous
contribution alone, as accounted for by the Krieger—Dougherty expression, (see Fig.
7.18). The effects of particle Sze and concentration are very strong, the latter being
accounted for in the E* factor.

Goodwin aso suggests that shear-thinning in such systems will become signifi-
cant at a shear stressd the order of kT/b°.

At very high shear rates, two-dimensional layering occurs and the electrostatic
contribution loses its dominance. The viscosity decreases towards that given by the
Krieger-Dougherty expression for non-interacting particles.

The range of the electrostatic forcesis greatly decreased if electrolyteis added to
the solution, so screening the charges on the particles. This means that using
electrostatic forces to thicken suspensions is limited to very pure systems, since
dight electrolytecontamination can give alarge decreasein viscosity.

Repulsion can also arise from the entropic forces caused by the interaction of the
chains o any polymer adsorbed onto the particle surfaces. Although not aways
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operating over great distances from the particle, they can affect the viscosity at high
phase volumes.

7.3.2 Overall attraction between particles

The formation of flocs traps part of the continuous phase, thus leading to a
bigger effective phase volume than that of the primary particles. This gives an
additional increase in the viscosity over and above that expected from the phase
volume of the individual particles. When flocculated suspensions are sheared, the
flocs rotate, possibly deform and, if the applied stressis high enough, begin to break
down to the primary particles.

Flocs sometimes take the form of chains which form networks throughout the
liquid. The length of the strands is a function of the shear stress.

All flocculated structures take time to break down and rebuild, and thixotropic
behaviour is usually associated with flocculated suspensions; clay suspensions being
classic examples. Thedriving force to rebuild the floc is Brownian motion, and since
this increases with decrease in particle size, the rate of thixotropic change is a
function of particle size. Thus, one expects systems of large particlesto recover their
viscosity slower than systems of small particles. Similarly large-particle suspensions
will break down faster under shearing. These considerations are important in the
design of thixotropic products such as paints and printing inks.

The attraction between particles can be reduced in a number of ways, including
the adsorbtion of molecules onto the surface of the particles. Adding electrolyte to
clay suspensions can reduce the differential charge effects. In al these cases, the
viscosity is reduced substantialy.

Flocculated systems usually have very high viscosities at low shear rate, and are
very shear-thinning, often giving the impression of a yield stress (see Fig. 7.19). In
many cases the Bingham model has been used to describe their behaviour.
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Fig. 7.19 Shear stress/shear rate curves for 1.5% by-weight suspensions of bentonite Supergel in water
(0%), and with 0.2% and 1.5% sodium chloride additions. The corresponding curve for pure water is
shown for comparison (I ppolito 1980).
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7.4 Viscoelastic properties of suspensions

Viscoelastic properties of deflocculated suspensions arise from particle interac-
tionsd dl kinds. If these require a preferred arrangement of the particles at rest in
order to fulfil some minimum energy requirement, there will aways be a tendency
for the suspension to return, or relax, to that arrangement. It is possible to make
small perturbations about the preferred state by means of small-amplitude oscilla-
tory-shear experiments. In this case the measure of eladticity is the dynamic rigidity
G' (8§ 3.5). Figure 7.20 shows a typical example of such behaviour.
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Fig. 7.20 Dynamic viscosity »” and dynamic rigidity G' as functions of frequency for polystyrene latex in
1072 M NaCl agueous solution ¢ = 0.35, particle radius= 0.037 um. (J. Goodwin, private communica-
tion.)
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Fig. 7.21 (a) Normal stress and viscosity versus shear rate for a PVC organosol (¢ = 0.54) dispersed in
dioctyl phthalate; (b) The relaxation time (defined as A = N, /av) plotted against the shear rate derived
from the data in (a). (Willey and Macosko 1978).
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Elastic effects are also observable in a steady simple-shear flow through normal
stress effects (cf. Chapter 4). Thisis demonstrated for a typical colloidal system in
Fig. 7.21. In general, the normal stresses found in colloidal systems are lower than
those in comparable polymeric liquids.

7.5 Suspensions of deformable particles

Many dispersions are made from deformable particles, the most obvious exam-
ples being emulsions and blood. In dealing with the rheology of these systems, dll
the earlier factors like interparticle forces are relevant, but the effect o phase
volume is not so extreme as with solids. The maximum phase volume is usualy
much higher than with solid particlessince the particles deform to accommodate the
presence of near neighbours. In this situation, the shape o the particles is poly-
hedral and the suspension resembles a foam in its structure. Maximum packing
fractions o 0.90 and above are usual (Pal et al. 1986).

Figure 7.22 shows the viscosity/shear rate profiles for typical emulsions. The
familiar shape seen for solid dispersions is again apparent as is the increasingly
non-Newtonian behaviour with increasein concentration. However, the asymptotic
value o viscosity at high shear rate is generally much lower than that observed for a
dispersion of solid particles at the same phase volume. This effect is ascribable to
particle deformation in the emulsion (see, for example, Fig. 7.23 and compare Fig.
7.8).

Whereas many modd studies have been carried out on monodisperse solid
particle dispersions, the usual mode of production of emulsions by droplet breakup
means that making monodisperse droplet-size samplesis difficult. Therefore, model
studies have not adways been able to distinguish between the relative effects of
droplet size and the shape o the droplet-size distribution. What is clear however is
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Fig. 7.22 Viscosity versus shear rate for emulsions of silicone oil in water at various values  phase
volumeof oil.



136 Rheology of suspensions [Chap. 7

10°

10°F 70
= 7 =100
LI0%F
Pl
3 7=400
S
207t
2 7o
kS
& 10}

4 1 1 1 1
0 04 08
Phase volume, @
Fig. 7.23 The relative viscosity of a wide-particle-size emulsion (see Pal et al. 1986) for a range of shear
rates. Note the onset of shear-thinning is at ¢ = 0.55 for this particular sample; cf. Fig. 7.22 where the

emulsion is not so polydisperse and shear-thinning begins at ¢ = 0.4.

that a smaler droplet size and a more monodisperse droplet size both give an
increase in viscosity. Since vigorous mixing of emulsions usually gives smaller and
more monodisperse particles, increasing the energy input in emulsion manufacture
awaysincreasesthe viscosity.

Theoretical work carried out by Oldroyd (1953) for very dilute emulsions showed
that viscodasticity results from the restoring force due to the interfacial tension
between the continuous and disperse phases. The emulsion droplets at rest are
spherical, but become ellipsoidal in shear, with a consequent increasein the surface
area.

Solid particles stabilised by adsorbed polymers can appear as deformable par-
ticleswhen the particle sizeis very small (say < 100 nm). I n this case the deformable
stabilising layer can form a considerable proportion of the real phase volume. The
overal effect is that the viscosity is a decreasing function of nominal particle size,
when evaluated at constant phase volume (based on uncoated particles). In this case
however the phase volume must be adjusted to take account of the stabilising layer.
This can be obtained by measuring the viscosity of very dilute suspensions and
applying Einstein's equation (egn. (7.2)).

7.6 The interaction of suspended particleswith polymer molecules also present in the
continuous phase

There are at least four ways in which particles and polymer molecules interact:

(i) Neutrally. That is, the polymer merely acts as a thickener for the continuous
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phase and the particles as inert fillers. The only overall effect is an increase in
viscosity. Examples o this are found in various toothpastes.

(i) For specific polymers (e.g. block copolymers), some part of the polymer
molecule adsorbs onto the particle while the other protrudes into the liquid phase.
This can have the effect of hindering any flocculation that might take place,
especialy with very small particles, and hence prevent any ensuing sedimentation or
creaming. The interacting polymer chains of adjacent particles overlap and cause
entropic repulsion because their local concentration is higher than the average.
Emulsion and dispersion stabilisers such as Gum Arabic are examples showing this
phenomenon.

(iii) Certain polymers have the ability to anchor particles together. This is caled
"bridging flocculation'. They are usualy very high molecular-weight macromole-
cules with groups that attach to the particles by unlike charge attraction. These are
deliberately introduced to cause flocculation in separation processes. An exampleis
the use o the polyacrylamidefamily of polymersin water-clarification plants. The
flocs formed by bridging flocculation are relatively strong and can withstand quite
high stresses before breaking down.

(iu) Some situations arise where polymers in the continuous phase can cause
flocculation of the particles. This "depletion flocculation™ arises when polymer
molecules, because o their finite sze, are excluded from the small gap between
neighbouring particles. The concentration difference thus caused between the bulk
and the gap causes an osmotic pressure difference. This resultsin solvent leaving the
gap, thus pulling the particles together. Thisin turn means that even more polymer
becomes excluded and the effect grows. Eventually the particles are completely
flocculated. The floc strength of such a system is relatively small, certainly as
compared to (iii) above. There must aways be a tendency for this to occur in any
system, but the time scale of the particle movement and the level of the force makes
it possible to ignoreit in some circumstances.

7.7 Computer simulation studies of suspension rheology

The computer simulations of flowing suspensions have been reviewed by Barnes
et al. (1987). The simulations are not dissimilar to computer simulations of simple
liquids such as argon and chlorine. Both simulations use the Newtonian equations
of motion and a Lennard-Jonestype of particle-particleinteraction law. The main
differences are that the interparticle forces are smaller and the hydrodynamic
resistanceto motion is much greater for the suspensions.

The techniques of non-equilibrium molecular dynamics (NEMD) consider an
assembly of particles which is given an initial set of positionsin space and a set of
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velocities. Assemblies of between one hundred and a few thousand can be dealt
with. The NEMD calculation is the re-evaluation of the positions and velocities over
a succession of short intervals (see, for example, Heyes 1986). From thisinformation
the stress tensor can be calculated, hence the viscosity and the normal stress
differences.

Given the similarities of approach, it is not surprising that the main results for
simple liquids and suspensions are similar. Following a lower Newtonian region the
systems display shear-thinning. At still higher shear rates the simulations predict
shear-thickening.

Considerable support for the existence of flow-induced structures in the shear-
thinning region is provided by NEMD. The simulations show that suspensions of
spherical particles form two-dimensional layers which break up at the onset of
shear-thickening. The corresponding results in simple liquids are the formation of
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Fig. 7.24 Typica predictions from a computer simulation of a suspension in shear flow (see Barnes,
Edwards and Woodcock 1987). Note: density is normalized using particle parameters. (a) Viscosity
versus shear rate, showing the qualitative features of Fig. 7.1; (b) Shows the trace of the stress tensor.
This osmotic-type pressure results in particle migration to regions of lower shear rate.
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strings o molecules aligned in the direction of flow and, for diatomic and longer
molecules, an additional alignment of the molecules.

The normal stress components are unequal at shear rates in the shear-thinning
region and the differencesincrease with shear rate. The increase is dow compared
with that predicted by polymer theory. Very little normal stress data have been
obtained by NEMD and N; and N, generally show a considerable scatter. The
results are often presented in terms of the trace o the stress tensor. This is also
referred to as an osmotic pressure.

Typical results are shown in Fig. 7.24 where the predicted osmotic pressure and
viscosity of a dense suspension of submicron particles is shown as a function o
shear rate.

The techniquedf computer simulation is likely to become more important in the
future, especidly in its ability to study complicated but idealized systems.



CHAPTER 8

THEORETICAL RHEOLOGY

8.1 Introduction

An alternative title to this chapter could be " Constitutive equations and their
uses' since it summarizes the vast magjority of published work in theoretica
rheology.

The theoretician seeks to express the behaviour o rheologicaly complex materi-
als through equations relating suitable stress and deformation variables. Such
equations are o interest in themselves and continuum mechanics, which addresses
such matters, is a respectablesubject in its own right which occupiesthe attention of
many theoreticians. The relevant equations, called constitutive equations or rheo-
logical equations o state, must reflect the materials' microstructure and one fruitful
area of study concerns the search for relationships between microstructure and
(macroscopic) constitutive equations. We have aready touched on this subject in
§6.8 and the reader is referred to the important books of Bird et al. (1987(b)) and
Doi and Edwards (1986) for further details.

Constitutive equations, which satisfy the basic formulation principles to be
discussed in §8.2 and are constrained either by microstructure considerations or by
the way the fluids behave in simple (rheometrical) flows, are also used by theoreti-
cians to predict the way the relevant fluids behave in more complex flows of
practical importance. Here, the constitutive equations are solved in conjunction with
the familiar stress equations o motion and the equation of continuity, subject to
appropriate boundary conditions. This is an important branch of non-Newtonian
fluid mechanics and is discussed briefly in $8.7.

Practical scientists and engineers may also look to constitutive equations for
more modest reasons. For example, they may be interested in reducing experimental
data to the knowledge of a small number of material parameters. This can be
accomplished by comparing the forms of graphs relating, for example, viscosity/
shear rate and/or normal stress/ shear rate with the corresponding predictions from
likely constitutive equations.

It is not difficult to make out a case for a detailed study of theoretical rheology
and many books are either devoted to the subject (like that of Truesdell and Noll
1965) or have substantial sections dealing with it (e.g. Lodge 1974, Bird et al.
1987(a), Schowalter 1978, Tanner 1985, Astarita and Marrucci 1974 and Crochet et
al. 1984). We have left the subject to the final chapter of the present book for
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specific reasons, which have already been aluded to in §1.5. The subject is a
difficult one by common consent and newcomers to the field (especially those
without a mathematical background) are often put off by the complexity of the
mathematics. | n previouschapters we have attempted to cover the various strands o
rheology without involving ourselves with intricate modern continuum mechanics,
but it is now time to address this important subject and to point the interested
reader in the direction o the many detailed texts and authoritative works on the
subject. At the same time, sufficient attention is given to the subject in the present
chapter to indicate to the reader, by way of an overview, the most important
features of present-day knowledge of continuum mechanics. For most readers this
will be dl that is required. For others, the growing list of available books on the
subject is more than adequate for further detailed study. In this connection we
recommend particularly the books by Bird et a. (1987(a)), Schowalter (1978) and
Truesdell and Noll (1965). Particular backgrounds and tastes vary greatly and many
readers will no doubt obtain significant benefit from the theoretical sectionsin the
other texts mentioned above.

The following discussion is limited to isotropic, time-independent non-Newto-
nian fluids. Readers interested in anisotropic fluid behaviour should consult the
papers of Ericksen and Ledlie (see, for example, Ledie 1966, 1979, Jenkins 1978).
Those interested in thixotropy and antithixotropy are referred to the review article
by Mewis (1979). The amount of theoretical literature on time-dependent materials
is limited. The considerable conceptual difficulties in the subject are no doubt
largely responsiblefor this deficiency.

8.2 Basic principlesd continuum mechanics

We seek equations for complex non-Newtonian fluids (with or without fluid
memory). To facilitate this, we need to define suitable stress and deformation
variables and consistent time-differentiation and integration procedures. The rele-
vant formulation principles required for this purpose are now well-documented and
are not controversial. However, a cursory glance at the literature may give the
reader the mistaken impression that there are two distinct kinds of formulation
principles, one associated with the names of Oldroyd, Lodge and their coworkers
and the other with the names of Truesdell, Noll, Coleman, Green, Rivlin, Ericksen
and their coworkers. Certainly, the way the formulation principlesare expressed and
applied varies between these groups, but there have been sufficient objective reviews
in recent years to proveto the perceptive newcomer to thefield that the formulation
principlesof continuum mechanics have an invariance which is independent of the
resecarcher! They can be expressed in different ways, but there is no essentia
controversy concerning the two basic approaches referred to and Chapter 2 of the
text by Crochet et al. (1984), as wdl as discussionsin other books, should convince
the reader o this fact (see also the paper by Lodge and Stark 1972).
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We may summarize the formulation principles as follows:

Principle 1. The congtitutive equations must be independent o the frame of
reference used to describe them. Expressing the equations in consistent tensorial
form will ensure that this principleis automatically satisfied and, in a real sense, this
principleis required of all physical theories.

Principle II. The constitutive equations must be independent o absolute motion in
space (Oldroyd 1950). Any superimposed rigid body motion cannot affect the basic
responseof the material *.

Principle I11. The behaviour of a material element depends only on the previous
history o that same material element and not on the state of neighbouring elements
(Oldroyd 1950). Expressed in an aternative way —the stress is determined by the
history o the deformation, and the stress at a given material point is uniquely
determined by the history of deformation of an arbitrarily small neighbourhood o
that material point (see, for example, Astarita and Marrucci 1974). The basic feature
of principle I1I is that "fluid memory"” as a concept must be associated with
material elements and not with points in space.

To illustrate how these principles (especidly | and III) apply in situations
aready discussed, consider again the general integral equations of linear viscoelas-
ticity which were introduced in $3.4. These can be written in the tensorial form **

6= —pd,+T,,
Tu(x, ) =2f" $(1=1")du(x, 1) a', (8.1)
—

where T;, is the extra stress tensor; d,, the rate-of-strain tensor; p is an arbitrary
isotropic pressure; §;, is the Kronecker delta, which takes the value zero for i # k

* Coleman and Noll et al. define a principle called "the principle of material objectivity", which
requires that the frame indifference of principle I must also apply to a time-dependent frame (see, for
example, Truesdell and Noll 1965, Astarita and Marrucci 1974). In other words, it is principles I and
11 combined.

** In this chapter we shall be forced to use general tensor analysis. We employ the usual notation—co-
variant suffices are written below, contravariant suffices above, and the usual summation convention
for repeated suffices is assumed. The need to distinguish between covariance and contravariance is
made clear in the detailed texts on theoretical rheology (e.g. Lodge 1974). In rectangular Cartesian
coordinates, we note that it is not necessary to distinguish between covariant and contravariant
components. For readers meeting tensor analysis for the first time, we recommend a study of Foster
and Nightingale (1979, pp. 1-14) Spain (1960, pp. 8-11) and Bird et al. (1987(a), pp. 597-606).
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and unity for i = k; t is the present time and t' an earlier time. x stands for x', x?2
and x?, the Cartesian coordinates o a fixed point in space. In the corresponding
one-dimensional version o (8.1) givenin Chapter 3 (egn. (3.21)), the dependence on
x was not made explicit, but it was implied. The reason for thiswas that the strains
for which the linear theory applied were so small that the particles occupied
essentialy the same position in space throughout the deformation.

If we attempt to use (8.1) under all conditions of motion and stress, we would
arrive a the unphysical conclusion that the stressin the particle which is at the
point x in space at the present time t is determined by the history of the rate of
strain in al the particles which were at the same point at previous times t'.

One simple (but incorrect!) way around this problem is to introduce the so-called
displacement functions x”* (defined such that x”* (i =1, 2, 3) is the position at time
t' o thedement that isinstantaneously at x' at time t) and to write

Tu(x, )=2f ¢(t=1)du(x', 1) dr’, (8.2)

where d,, now relates to the position x’. This equation is certainly in sympathy
with principle ZZZ since it relates "*memory" to "particles” rather than " points in
space”, but egns. (8.2) now equate a tensor at the point x with atensor at the point
x’ and thisviolates principlel, so that the satisfaction of the formulation principles
(and the above discussion refers to only two of them) is clearly nontrivial.

The corresponding differential equations of linear viscoelasticity are also invalid
under general conditions of motion and stress. Take, for example, the three-dimen-
siona form o the smple Maxwell moddl given by

9
k+>\é_t_7;k=2n0dik' : (8.3)

-

The partial derivative, by definition, refers to the way the stressvariableis changing
with time at a particular point in space and, at the very least, this must be replaced
by the convected (Lagrangian) time derivative D /Dt o hydrodynamics, in order to
accommodate changesin a fluid element, where

m

v™ being the velocity vector. However, yet again, the situation is not that ssimpleand
the correct application of principlel] requirestimederivativesd greater complexity
than (8.4). These will be introduced later.

Principles| to 711 are o fundamental importance in the formulation of rheologi-
ca equations d state; however, we would also wish such equations to satisfy two
further principles:
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Principle IV. In the case d €eastic liquids, the deformation history of a material
element in the distant past must be expected to have a weaker influence on the
current stress response than the deformation history of the recent past. This is
known as'the principle of fading memory".

Principle V. The equations must be consistent with thermodynamic principles.
Astarita and Marrucci (1974, p. 52) show that there are pitfalls in developing a
purely mechanical rheologica theory without due regard being paid to thermody-
namics. For instance, the principle of ' positive dissipation” can provide useful
constraints on constitutive equations. At the same time, much o the literature which
attempts to apply thermodynamicsin a general way to continuum mechanics has
not been too successful and much o it is controversial.

8.3 Successful applicationsof the formulation principles

In his classic 1950 paper, Oldroyd sought to satisfy the basic principles of
formulation by introducing a convected coordinate system ¢/ embedded in the
material and deforming continuously with it, so that a material element which is at
¢/ at one instant is at the same point (with respect to the convected coordinate
system) at every other time. Oldroyd argued that, provided one works in a
tensorially-consistent manner in the convected coordinate system, the basic princi-
ples I-1II are automatically satisfied, since using (&', £, £€3, t') as independent
variablesessentially satisfies the need to concentrate on fluid elements; thus moving
away from the more usua "Eulerian™ preoccupation with fixed points in space.
Further, the ¢/ coordinate system is unaffected by absolute (rigid body) motion in
space and principle II is satisfied automatically (provided, o course, that oper-
ations like time differentiation and integration do not introduce any unwanted
dependence on absolute motion in space). In this connection we note that a time
derivative D /Dt holding convected coordinates constant is a convenient and valid
differential operator.

The metric tensor v,(£, t') of the &/ system was taken by Oldroyd as the
fundamental deformation variable *, since, in the usual definition,

[ds(e)]” =y, (& ') d¢’ @€, (8.5)

and v,(§, t') clearly providesa convenient measure of the distance ds(t’) between
the parts of the arbitrary element at ¢’

Oldroyd (1950) showed how his genera theory could be used by means of some
smple examples. One example was the so-called liquid A, which obeyed the

* The contravariant metric tensor v/’ can also be used for this purpose (seg, for example, Truesdell 1958,
White 1964).
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differential constitutive equation:

+ A

(8.6)

T; —_— T = —_— +
s Dt /' Dt 2 D2

D ( Dle Dijl)
= 710 )
where 7,(§, t) is the extra stress tensor in the convected coordinate system * and

ne, A, and A, are material constants. Another example was the integra model
cdled liquid A

" Dy,
m(ﬁ, t) = f_wqb(z - t’)D—?(g, t’) de’. (8.7)

Having written equationsin the convected coordinate system ¢/, Oldroyd showed
how to transform equations like (8.6) and (8.7) into the fixed laboratory coordinate
system x'. The relevant transformation rules for so doing were given by Oldroyd
(1950). For example, the D/D¢ time derivative of the differential models in
convected coordinates must be replaced by the " codeformational™ derivative b/b t,
where, for a symmetric covariant tensor b,;,, we have

b, by P o™
= m + — —0D; .
ot ot to axm Bxi bmk+ axk b:m, (8 8)

and for a symmetric contravariant tensor b, the relevant form is

ik ik ik i k
ob’"  db mob™  dv ik av Bim

ot ot U ax” ax” 3x™

(8.9)

The derivative b/b ¢ in egns. (8.8) is often called the lower convected derivative and
that given in egns. (8.9) the upper convected derivative. The symbol A over the
tensor being differentiated is usualy employed for the lower convected derivative
and the symbol v for the upper convected derivative.

Oldroyd (1950) also showed that terms like Dy, (£, ¢")/Dt’ in integral models
like (8.7) need to be replaced by their so-called " Eulerian fixed components™. For
example, v;(£, t') has to be replaced in the fixed coordinate system x' by G,
where

ax’™ ox’" ,
3! ngr(z )’ (810)

ik

* In his development, Oldroyd used, for consistency and convenience, Greek lettersfor tensor variables
in the convected ¢/ system and Roman lettersfor tensor variablesin the fixed x' system.
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g,, being the metric tensor of the x’ coordinate system. When the fixed coordinate
system is Cartesian, we have g,,,, = 8...., the Kronecker delta, and hence

ax’" ax"
G, =——. 11
ik axl axk (8 )

The equivalent stress tensor in fixed laboratory coordinates for liquid A’ is

s L ax ™ ax’ b
Tu(x. )=2f o(1=¢) 7 —5d(x', 1) dt. (8.12)

We remark that the contravariant equivalents of (8.6) and (8.7) are called liquid B
and B', respectively, and are given in fixed coordinates by

; bTik . bdik
Tk+)\1W—=2nO[dk+)\2 Y, ] (813)
and
dx’ K ,
T*(x. t) =2 ot — )2 B amr(x' vy ar, (8.14)
respectively.

Oldroyd introduced models like the A and B series to illustrate the generd
theory, but their introduction gave the impression to some workersin the field that
his formulation work was in some sense not completely general. This is now
acknowledged to be a mistaken impression, but at the same time it is interesting to
note that simple models like liquid B and liquid B' have figured prominently in
modern developmentsin the numerical simulation of non-Newtonian flow (see, for
example, Crochet et a. 1984). Some of the rheometrical consequencesdf Oldroyd-
type models are given later in Table 8.3.

For an updated version o Oldroyd's work on formulation, the reader is referred
to the review article published posthumously in a commemorative volume (Oldroyd
1984).

The application of the formulation principlesin the work of Coleman and Noll et
al. takes a somewhat different path. Some general hypothesis is made on the
relationship between stress and deformation. The formulation principles, applied
within a Cartesian coordinate framework, are then used either to supply the
resulting equations or at least to provide constraints on them. We shall refer to this
procedure as “ the formal approach”.

Occurring quite naturally in the development of Coleman and Noll et d. is the
Eulerian fixed component equivalent of the tensor y,, given in Cartesian coordi-
nates by (8.11) and caled the Cauchy-Green tensor. Also of importance is the



148 Theoretical rheology [Chap. 8
series expansion of G,, in terms of the so-caled Rivlin-Ericksen (1955) tensors
A
—t 1)’
’k(x tt )— Z (t—.)_uA(j) (815)
The Rivlin—FEricksen tensors are related to the (lower convected) time derivative
of Oldroyd through

v 'd,
btn—] :

AR =2 (8.16)
In a later development, White and Metzner (1963) derived the contravariant
equivalentsof the Rivlin-Ericksen tensors involving the Finger tensor F™* in place
of the Cauchy-Green tensor G,,, where, in Cartesian coordinates,
w ox' axk
T ax™ (8.17)
The resulting tensors have become known as the White—Metzner tensors and have
an obvious counterpart to (8.16) with the upper convected Oldroyd derivative given
by egns. (8.9) replacingthat in egns. (8.16) (see, for example, Walters and Waterhouse
1977).

We may conclude that the basic framework of Oldroyd is matched in the
developmentsd Coleman, Noll et a. and any differencesin the application of the
various techniques result from the particular outlook adopted rather than from any
fundamental disagreement.

The variables and operations needed to construct rheological equations of state
are now known and it is Simply a matter o employingand applying these within the
context of certain constitutive proposals. In these proposals there may be a
preoccupation with generality or, alternatively, a search for simplicity. A comprom-
ise between the two is also a possihility.

If our concern is with generality, we may write

T = #[G,()], (8.18)

which expresses mathematicaly the requirement that the stress at time t is de-
termined in a very general way by the history of the deformation. % is caled a
tensor-valued functional, and in the equation, the stress at timet is to be viewed as
afunction o the deformation measure, which isitself afunction of the time variable
t' with —eo <t' <t The integrals in (8.12) and (8.14) are (smple) examples of a
functional.

When certain forma requirements o functional analysis are added to egns.
(8.18), we obtain the so called "simple fluid” of Coleman and Noll, which has had
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an influential impact on constitutive theory (see, for example, Truesdell and Noll
1965).

On account of their generdlity, egns. (8.18) have limited predictive utility in
non-Newtonian fluid mechanics and, not surprisingly, ssmpler equations have been
sought. These arise from three distinct approaches:

I. One may relax the complete universality embodied in egns. (8.18) but still
make constitutive assumptions of some generality. Such developments are consid-
ered in §3.4.

I'1. One may consider approximations arising from simplificationsin the flow so
that G,, in egns. (8.18) has a relatively simple form. These approximations lead to
general equations o state for restricted classes of flow. They are discussed in 58.5.

[11. One may consider special (usually very simple) choicesd the functional %
Theselead to particular equations, which are neverthelessvalid under all conditions
of motion and stress. Examples of this sort are considered in detail in 58.6.

8.4 Some general constitutive equations

The formal approach was used by Reiner (1945) and Rivlin (1948) in a search for
the most general constitutive equations for inelastic non-Newtonian fluids. The
resulting model, which has become known as the Reiner-Rivlin model, has constitu-
tive equations o the form

Ty =20(1y, I)dy +45(L, L,)d/d,, (8.19)

where I, and I, are the two non-zero invariants o the strain-rate tensor d,,.

The behaviour of the Reiner-Rivlin model in a steady simple-shear flow can be
easily determined. Surprisingly for an inelastic model, it predicts normal stresses.
However the resulting normal stress distribution (viz. N; =0, N, #0) isnot o a
form which has been found in any real non-Newtonian fluid. Consequently, any
normal stress differences found experimentally in a steady shear flow can be viewed
as manifestations of viscoelastic behaviour (cf. Chapter 4).

A simplified version o the Reiner—Rivlin fluid given by

Ty =20(L)d;, (8.20)
where
1= (2d*d})"”, (8.21)

has been given significant prominence in the rheological literature. It is familiarly
known as the " generalized Newtonian mode". Theform o theinvariant I, givenin
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(8.21) is chosen such that it collapses to the shear rate y in a steady simple-shear
flow.

The generalized Newtonian model can account for variable viscosity effects,
through the function 5(Z,), but not normal stress differences. Therefore, it has an
obvious application to fluids which show significant viscosity variation with shear
rate, but negligibly small normal stress differences, and also to flow situations where
variable viscosity is the dominant influence (even though normal stress differences
may be exhibited by the fluids under test).

In an influential development, Rivlin and Ericksen (1955) used the formal
approach to derive constitutive equations based on the general proposition that the
stress is a function d the velocity gradients, acceleration gradients... (n — 1)th
acceleration gradients. The resulting Rivlin-Ericksenfluid has equations of state of
the form

T, =f[A‘1) A‘f,)...A(j';’], (8.22)

Jl

where f is a function of the Rivlin-Ericksen tensors introduced in (8.15). Useful
constraints on the form o the function f have been found using routine matrix
theory (see, for example, Truesdell and Noll 1965).

In a series of papers, Green, Rivlin and Spencer (1957, 1959, 1960) developed
integral forms of eqgns. (8.18), the lower-order approximations being essentialy the
same as the integral equations discussed in §8.5 (cf. egns. (8.26)-(8.28)). The
so-caled Green-Rivlin fluids can be thought of as arising from a procedure
analogous to the Taylor-seriesexpansion of an analytic function (cf. Pipkin 1966)
or, dternatively, from a direct application of the Stone-Weierstrass theorem (cf.
Chacon and Rivlin 1964).

8.5 Conditutive equationsfor restricted classesof flows

There is no doubt that the simple fluid of Coleman and Noll has been the most
influential application of the formal approach. The resulting equation is (8.18), with
a suitably chosen function space and accompanying norm. In the original develop-
ment, the function space(s) chosen by Coleman and Noll had certain limitations
which were highlighted by Oldroyd (1965), who argued that the Newtonian fluid
was hot a specia case of the simplefluid except in the limit of very dow flow. This,
and related objections, have been overcome in the more recent work of Saut and
Joseph (1983).

Notwithstanding the original limitations mentioned above, the basic simple fluid
hypothesis was studied to good effect by Coleman and Noll, who developed
smplified constitutive equations for specia classes of flows. Their most influential
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contribution applies to so-called ""dow flow™, which to be precise requires the flow
not only to be dow but also "sowly varying™ *.

The Coleman and Noll (1960) work on the dow flow o fluids with fading
memory leads to a set of approximate equations (ordered by some convenient
measure o " speed of flow™), the first three being expressiblein the form

T = oy AT, (8.23)
1 2 1A

T = 0, AR + a0, AQ + a; AS )’A‘,ﬁ, (8.24)
1 2 Djad j

T = a AG) + 0, AQ + a; AD'AG) + B APAD/AR

+B,A + a5 (APAR + APAR). (8.25)
where a, , 8, etc. are dl material constants. Equation (8.23) is the Newtonian model.
Equations (8.24), cdled the second-order model, have been used extensively in
modern non-Newtonian fluid mechanics.

The dow-flow development is often referred to as the “retarded-motion expan-
son™ and the resulting equations as the “hierarchy equations™ of Coleman and
Noll. Equations (8.23)-(8.25) are important because they provide convenient equa-
tions for al simple fluids provided the flow is sufficiently dow.

Another type o approximation may be obtained from the formal approach for
the case when the " deformation is small**. (Such a situation exists, for example, in
the case of small-amplitude oscillatory shear flow.) When certain formal ** smooth-
ness' assumptions are made, the approximation leads to integral constitutive
equations o the form (Coleman and Noll 1961, Pipkin 1964)

Ty = fle(S)Gik(S) ds, (8.26)
0

=]

Ta= [ Mi()Gu(s) ds+ [ [“M(s1, )G/ (51)Gie(s2) dsy dsz, (827)
T, =‘/(;°°M1(S)Gik(s) ds+ _/(;wj(;wMz(sl’ 55)G/(51)Gji(s,) ds; ds,
7L (11, 52, 550G/ (52)G (53)Gue(s1)

+ M,y (51, 53, Sa)Gij(Sl)Gjl(sz)le(ss)) ds; ds, dss, (8.28)

* This is an important observation for some flow situations. For example, on account of the no-dlip
hypothesis, flow near a reentrant comer may be regarded as'*dow'" but in no sense can such a flow be
regarded as "'dowly-varying'™, so that the Coleman and Noll development for the flow of fluids with
fading memory does not apply to such situations (see, for example, Crochet et a. 1984).



152 Theoretical rheology [Chap. 8

where s=t — ¢’ is the time lapse and, from the symmetry of the stress tensor, the
kernel functions must satisfy

M,(sy, 55) = My(s55,.51), My(sy, 52, 83) = My(s3, 55, 5,). (8.29)

Equations (8.26) are called the equations of finite linear viscoelasticity *, whilst
(8.27) are cdled the equations o second-order viscoelasticity and so on. The
small-deformationdevel opment of Coleman and Noll has much in common with the
integral expansionsd Green, Rivlin and Spencer (1957, 1959, 1960). Crochet €t al.
(1984) advocate care in the use o the integral expansions since their range o
applicability is not as wide as might be anticipated.

Many o the flow problems which are tractable by analytic methods fal into the
category o ""nearly viscometricflows", which are flows that are close to viscometric
flowssuch as Poiseuilleor Couette flow; the "' closeness™ can be defined in a precise
mathematical way. Pipkin and Owen (1967) have addressed the possibility of
obtaining constitutive equations for this restricted class of flows. They conclude
that, in an integral formulation, thirteen independent kernel functions are required.

So-called ""'motions with constant stretch history" have been studied by numer-
ous theoretical rheologists, and the associated constitutive equations have been
derived. The subject is covered in the books by Huilgol (1975), Lodge (1974) and
Dedly (1982).

8.6 Simple constitutiveequationsof the Oldroyd / Maxwell type

The developments discussed in §8.4 and §8.5 must be viewed as important
contributions to the subject, but most o the associated equations are o limited
utility in the solution o practical flow problems, either on account o their
complexity or their limited range o applicability. Accordingly, numerous attempts
have been made to develop relatively smple constitutive equations with predictive
capahility. Theform of these equations may be guided by a knowledged the fluid's
microstructure (cf. 56.8) or by the requirement that they must be able to simulate
real behaviour in simple (rheometrical) flow situations. For example, the popular
Oldroyd models arose originally from a desire to generalize (for al conditions o
motion and stress) relatively simple linear equations like the Jeffreys model (egn.
(3.15)) which were known to be useful approximations for very dilute suspensions
and emulsionsunder conditions of small strain (see, for example, Frohlich and Sack
1946, Oldroyd 1953, Oldroyd 1958).

It must be admitted that to model microstructure in any complete way would
require prohibitive detail and some compromise is needed between capturing the

* Employihgan integration by parts, it is possible to show that (8.26) is equivalent to liquid A" (eqns.
(8.12)).
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known complexity of the physics and generating equations with predictive capabil-
ity.

A further factor of importance in the choice of congtitutive mode is the
application in mind. For example, it is more important for the model to represent
the extensional-viscosity characteristics (rather than, say, the normal-stress differ-
ences) if the modd is to be employed in a fibre spinning problem.

In summary, simple constitutive models have to satisfy, if possible, the following:

(i) they must satisfy the formulation principles discussed in §8.2. This is clearly
not an optional requirement. The Oldroyd approach is ideally suited for this
purpose;

(ii) they should reflect the physics of the microstructure;

(iii) they should be able to simulate the behaviour of thefluid in ssimpleflowslike
steady simple shear, oscillatory shear and extensional flow;

(iv) they should have regard to the application in mind.

Given these constraints and the plethora of possibilities, it is not appropriate for
us to favour one model at the expense of others, especialy in view of the fact that
history suggeststhat the popularity of a given model is often ephemeral. Rather, we
list in tabular form many o the popular differential constitutive modelswhich have
appeared in the literature and can be viewed as having predictive capacity (see
Tables 81 and 8.2). These can al be regarded as special cases o the general
canonical forms *:

T, =TP T T2, (8.30)

in which the terms on the right hand side are given by

A A
exp(‘n_l T,,‘.l:) TP +a TPTE + MTD = 2mdy, (8.31)
1 1
T;g) =2nd, (8-32)

where, unless otherwise stated, A;, 1, 15, €, and a are al material constants and
the derivative O is given by **

(8.33)

where a is a scalar parameter.

* For convenience, the models are expressed in a form appropriate to a rectangular Cartesian
coor dinate system.
** We recommend Crochet et al. (1984, Chapter 2) and Giesekus (1984) for a fuller discussion of the
various time-derivativesof continuum mechanics.



154 Theoretical rheology [Chap. 8

TABLE 81
Specia cases of the general canonical form of constitutive equation (egns. 8.30-8.33)

Model € a a \M(20 m (=0 m (=20
Giesekus (1982) 0 a 0 A m 0
Phan-Thien-Tanner

(2977) € 0 a A M 0
Phan-Thien-Tanner B

(Phan-Thien 1984) 0 0 a A 1.(13) 0
Johnson-Segalman

(1977) 0 0 a Ay ™ 0
White-Metzner

(1963) 0 0 Y Ai(12) mdy) 0
Oldroyd B 0 0 0 A m 1,
Corotational Oldroyd

(Oldroyd 1958) 0 0 1 Ay mnm M2
Upper convected

Maxwell 0 0 0 Ay N 0
Second-order model Not applicablein thisform
Leonov (1987) 0 3 0 A ™ 0

We may also use the alternative canonical form

[w} o
'7}k+>‘1Tik22711(dik+>‘zdik)’ (8.34)

( AlT )T + >\1T
€X €E— mm i a— i
P\ eh m Y

1

where we have now omitted the 5, contribution and essentially replaced it by a
retardation time A,

TABLE8.2
Specia cases of the genera canonical form of constitutive equation (eqn. 8.34)

Model € « a AM(z20) A, 1 (>0)
Giesekus (1982) 0 a 0 A 0 ™
Phan-Thien-Tanner

(1977) € 0 a A 0 m
Phan-Thien-Tanner B

(Phan-Thien 1984) 0 0 a A A, (1)
Johnson-Segalman

(1977) 0 0 a A 0 ™
White-Metzner

(1963) 0 0 0 (1) 0 mly)
Oldroyd B 0 0 0 A >0 m
Corotational Oldroyd

(Oldroyd 1958) 0 0 1 A >0 m
Upper convected

Maxwell 0 0 0 A 0 ™
Second-order model 0 0 0 0 <0 m
Leonov (1987) 0 : 0 A ] 7
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TABLE 83
Rheometrical forms derived from some of the modelsin Tables 8.1 and 8.2

Model n(¥) M(¥) Ny (1) ne(€)
. 2my m
Oldroyd B m+m 2mA ¥ 0 T2 T T+ Ae
+37,
Corotational 2Am72 M(y)
L 1Y 1Y
+ -8 3,
Oldroyd 1+ 2292 iV 1+22257 3 (m +m2)
Johnson-Segalman m 272 4 N-(3 2
- -7 1(7) _ —
(1977) a TYNE
1+2a(1——7) 14241~ -

T
T IrA-a)Ae

White-Metzner 2,(V3€)
. 20(IN ()52 0 1
(1963) my) 1(NA(DY ——1—2>\1(J§e)e
m(v3¢)
1+ A, (V3é)¢
Pha;};Thi;I;l-Talngnsei B m(7) MDA a0 2m(BY
" . -~ 1 _ - .
(Phan-Thien ) 1+2a(1—--‘21)>\2172 l+2a(1—%))\2ﬂ’/2 2 1-2(1—a)Aé
m(v3¢)
T+ (1—a)Aé
Giesekus(1982) Consult thereferencefor detailed expressions

Equations (8.32), and by implication the term in A, in (8.34), can be viewed as a
"Newtonian dashpot” contribution, either introduced to reflect the solvent contri-
bution in liquids like polymer solutions or to ensure that the shear stress in a steady
simple shear flow is a monotonic increasing function, of shear rate. Some of the
so-called Maxwell models (withn, =0 or A, = 0) suffer from the problem of astress
maximum unless a=0 or 2.

For convenience, we list in Table 8.3 the main rheometrical functions derived
from many of the modelsintroduced in Tables 8.1 and 8.2.

Not surprisingly, there have been similar developments involving integral equa-
tionsinstead o the implicit differential models discussed above. These range from
the comparative simplicity of the Lodge (1956) rubber-like liquid (which is essen-
tially equivalent to liquid B") and more or less stop at the complexity provided by
the so-called KBKZ modd (cf. Bernstein et a. 1963), with constitutive equations
which, in Cartesian coordinates, are essentially given by

7:-1(:/_' [4’1(11’ L, t—t")G, (") + &, (L, I, t—t/)Gij(t,)ij(t,)] de’,

(8.35)
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where I, and I, are now the two non-zero invariants of G,,. We remark that the
Doi-Edwards modd discussed in §6.8.5 (with the added " independent-alignment"
assumption) leads to an equation of the KBKZ type (see, for example, Doi and
Edwards 1986, Marrucci 1986).

8.7 Solution of flow problems

We now consider the application of the work of the previous sections to the
solution of non-Newtonian flow problems. To facilitate this, it is helpful to attempt
aflow classification (cf. Crochet et a. 1984, Chapter 3).

I. When the flow is ""'dow", the choice of constitutive model is self-evident (i.e.
one o the hierarchy models (8.23)-(8.25)) and there is no merit whatsoever in
employing any of the more complicated implicit differential or integral models
discussed in the previous section (cf. Walters 1979). Flow problems in the case of
dow flow invariably resolve themselves into perturbation analyses with *'speed of
flow" as the relevant perturbation parameter.

I1. When the flow is dominated by the shear viscosity, the generalized Newtonian
model (8.20) can be employed.

I1l. Many o the flow problems which have been solved successfully using
analytic techniques fall into the category of '"nearly viscometric flows". Linear
stability analyses, flow caused by rotating bodies and various pipe flows can be
placed in the category of nearly viscometric flows. We have already indicated that
the general description of such flowsis of prohibitive complexity and approximate
equations have been employed in existing analyses. These become perturbation
problems using the basic viscometric flow as the primary flow and a convenient
(geometricdl, flow or continuum) parameter as the perturbation variable.

V. The advent o powerful digital computers has seen interest in non-Newtonian
fluid mechanics moving towards the solution of complex flow problems for highly
elastic liquids: situations which are of practica importance. Differential and in-
tegral equations at al levels of complexity are being employed in this expanding
research field and it is probably true to say that, within reason, there are now few
restrictionson the amount of detail that can be handled in the constitutive equation
employed. The subject is covered in detail in the text by Crochet et a. (1984). The
so called " high Weissenberg-number problem' which restricted al early work in the
fidld isdiscussed in that text. However, we remark with interest that the recent work
of Crochet and his collaborators (cf. Marchal and Crochet 1987) has not been so
hampered by the high Weissenberg-number problem and the resulting numerical
simulationsare valid for conditions of practical importance where mgjor changesin
flow characteristics are observed. Any current discrepancies between theory and
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experiment, and there are still some, can no longer be attributed (solely) to the high
Wei ssenberg-number problem. Attention must now be focussed on other problems,
viz.:

(i) the possibility of three-dimensional flow characteristics occurring in seem-
ingly two-dimensional flows;

(ii) the possibility of "bifurcation™ and lack of uniquenessin complex flows of
highly elastic liquids;

(iti) the inadequacies of the consgtitutive equations in current use for very
complex materials;

(iv) theincorrect numerical treatment of flow near reentrant corners and possibly
also the incorrect numerical treatment of the extra constitutive difficulties associ-
ated with long-range fluid memory.

The field d the numerical simulation of non-Newtonian flow is developing
rapidly and a constant update on current literature is recommended in this area.



159

GLOSSARY OF RHEOLOGICAL TERMS

This glossary is based mainly on the British Standard o the same title and
numbered BS 5168:1975. It differs from the British Standard in that it is not
intended to be comprehensive but limited to the terms which are most relevant to
the present book. All quantitative terms have been given their S units and symbols
where this is feasible. The symbols are those used in this book and are therefore
recommended; they include many which are recommended by the U.S. Society o
Rheology and which were published in the Journal of Rheology (1984) 28, 181-195.

Anti-thixotropy

Apparent viscosity

Bingham modd

Biorheology

Complex (shear)
compliance

An increase o the apparent viscosity under constant
shear stress/rate followed by a gradual recovery when
the stress or shear rate is removed. The effect is time-de-
pendent (see negative thixotropy and rheopexy).

The shear stress divided by rate of shear when this
quotient is dependent on rate of shear. Also called
viscosity and shear viscosity. 5 Pa.s.

A model with the behaviour o an elastic solid up to the
yield stress; above the yield stress, the rate o shear is
directly proportional to the shear stress minus the yield
stress (see egn. 2.8b).

The study of the rheological behaviour of biological
materials.

The mathematical representation of a (shear) compliance
asthe sum o areal and an imaginary part. The real part
is sometimes called storage compliance and the imagin-
ary part loss compliance. J* (for shear) Pa-'.
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Complex (shear)
modulus

Complex viscosity

Compliance

Consistency

Constitutive equation

Continuum rheology

Couette flow
(circular)

Couette flow
(plane)

Creaming

Creep

Dashpot

Glossary d rheological terms

The mathematical representation of a (shear) modulus as
the sum of areal and an imaginary part. The real part is
sometimes called storage modulus and the imaginary
part loss modulus. G* (for shear) Pa.

The mathematical representation of a viscosity as the
sum of a rea part and an imaginary part. The real part
is usually called dynamic viscosity, the imaginary part is
related to the real part of the complex shear modulus. »*
Pa.s.

The strain divided by the corresponding stress. J (for
shear) Pa™!.

A general term for the property of a material by which it
resists permanent change of shape.

An equation relating stress, strain, time and sometimes
other variables such as temperature. Also called rheo-
logical equation of state.

The rheology that treats a material as a continuum
without explicit consideration of microstructure. Also
called macrorheology and phenomenological rheology.

Simple shear flow in the annulus between two co-axial
cylindersin relative rotation.

Simple shear flow between paralel plates in relative
motion in their own plane.

The rising of particles of the dispersed phase to the
surface of a suspension.

The slow deformation of a material; usually measured
under constant stress.

A model for Newtonian viscous flow, typicaly repre-
sented by a piston moving in a cylinder of liquid.



Deborah number

Deformation

Die swell

Dilatancy

Dynamic modulus

Dynamic viscosity

Elastic(ity)

Elastic energy

Elasticliquid

Elastic modulus

El astico-viscous

Elongational viscosity

Equation of state
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The ratio o a characteristic (relaxation) time o a
material to a characteristic time o the relevant deforma-
tion process.

A change of shape or volume or both.

A post-extrusion swelling.

(1) Anincreasein volume caused by deformation.
(2) Shear thickening (deprecated usage).

Synonym o complex modulus.

(D In classica fluid mechanicsa synonym of coefficient
of viscosity used to distinguish this quantity from
kinematic viscosity. n Pa.s.

(2) In rheology, the quotient o the part of the stressin
phase with the rate of strain divided by the rate of
strain under sinusoidal conditions. n’ Pa.s.

A reversible stress/strain behaviour

Synonym o strain energy.

A liquid showing elastic as wdl as viscous properties (see
elastico-viscous, viscoelastic and memory fluid).

A stress divided by the corresponding elastic strain. Pa.

A descriptive term for a liquid having both viscous and
elastic properties.

Synonym of extensional viscosity.

Synonym of constitutive equation.
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Extensional viscosity

Extensional strain

Extensional strain rate

Extra-stress tensor

Flow

Flow birefringence

Flow curve

High elasticity

Hooke mode

Intrinsic viscosity

| sotropic

Kelvin modd

Kinematic viscosity

Laminar flow

Glossary o rheological terms

The extensional (tensile) stress divided by the rate of
extension. Also called elongational viscosity and Trou-
ton viscosity. ng Pa.s.

Relative deformation in extension. e.
1

The change in extensional strain per unit time. € s~ .

The difference between the stress tensor and the iso-
tropic pressure contribution; used for incompressible
materials. T;, Pa

A deformation, of which at least part is non-recoverable
(rheological usage).

The optical anisotropy caused by flow.
A curve relating stress to rate of shear (cf. rheogram).
The ability of a material to undergo large elastic strains.

A model representing Hooke's law of elasticity, e.g. a
spring.

The limiting value o the reduced viscosity as the con-
centration approaches zero. [1).

Having the same property in al directions.

A mechanical model consisting o a Hooke model and
Newtonian fluid model in parallel. Also caled Voigt
model.

In classical fluid mechanics, the dynamic viscosity di -
vided by the density of the material. v n? s~ ™.

Flow without turbulence.



Linear viscoelasticity

Loss angle

L oss compliance

Loss modulus

Macrorheology

Maxwel model

Méelt fracture

Memory fluid

Microrheology

Model

Modulus

Navier—Stokes

equations

Necking

Negative thixotropy
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Viscodlasticity characterized by a linear relationship
between stress and strain.

The phase difference between the stress and strain in an
oscillatory deformation.

The imaginary part of the complex compliance. J* (for
shear) Pa-'.

The imaginary part of the complex modulus. G** (for
shear) Pa

Synonym of continuum rheology.

A mechanical model consisting of a Hooke model and a
Newtonian fluid model in series.

The irregular distortion of a polymer extrudate after
passing through a die.

Synonym of elastic liquid.

The rheology in which account is taken of the micro-
structure of materials.

An idealized relationship of rheological behaviour ex-
pressiblein mathematical, mechanical or electrical terms.

In rheology, the ratio of a component o stress to a
component o strain. Pa.

The equations governing the motion of a Newtonian
fluid.

The non-uniform loca reduction o the cross-sectional
area o a test piece under extension.

Synonym of anti-thixotropy.
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Newtonian fluid model

Non-Newtonian fluid

Normal force

Normal stress
Normal stress

difference

Normal stress
coefficient

Overshoot

Plastic(ity)

Plastic viscosity

Poiseuille flow

Power-law behaviour

Pseudoplasticity

Glossary d rheological terms

A modd characterized by a constant value for the
quotient of the shear stress divided by the rate of shear
in a smple shear flow and with zero normal stress
differences (see dashpot).

Any fluid whose behaviour is not characterized by the
Navier—Stokes equations.

(D A force acting at right angles to a specified area. N.
(2) In rheology, a force acting at right angles to an
applied shear stress. N.

The component of stress at right angles to the area
considered. a,, Pa.

The difference between normal stress components. N,
Pa

A normal stress difference divided by the square o the
rate of shear. ¥, Pa.s?.

The transient rise of a stress above the equilibrium value
a the start up of simple shear flow.

The capacity of a material to be moulded but also to
retain its shape for a significant period under finite
forces; showing flow above a yield stress.

For a Bingham model, the excessof the shear stress over
the yield stress divided by the rate of shear. n, Pa.s.

Laminar flow in a pipe o circular cross section under a
constant pressure gradient.

Behaviour characterized by alinear relationship between
the logarithm of the shear stress and the logarithm of the
rate of shear in simple shear flow.

Synonym for shear-thinning (usage deprecated).



Rate d shear

Reduced viscosity

Relative deformation

Relative viscosity

Relaxation time

Retardation time

Reynolds number

Rheogoniometer

Rheogram

Rheologica equation
o state

Rheology

Rheometer

Rheopexy
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(See shear rate).

The specific viscosity per unit concentration o the
solute or the dispersed phase. n? kg-'.

The measurement of deformation relative to a reference
configuration o length, area or volume. Also called
strain.

The ratio of the viscosity of a solution to that of the
solvent or of adispersion to that of its continuous phase
(see viscosity ratio). 7,.

The time taken for the shear stress of a fluid that obeys
the Maxwell model to reduce to I/e o its origind
equilibrium value on the cessation of steady shear flow.

The time taken for the strain in a material that obeys the
Kelvin model to reducetol/e o itsoriginal equilibrium
value after the removal o the stress.

The product o a typica apparatus length and a typica
fluid speed divided by the kinematic viscosity of the
fluid. It expresses the ratio of the inertia forces to the
viscous forces. R.,.

A rheometer designed for the measurement of normal as
wdl as shear components of the stress tensor.

A graph o arheological relationship.

Synonym of constitutive equation.

The science of the deformation and flow of matter.
An instrument for measuring rheological properties.

Synonym of anti-thixotropy.
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Rigidity modulus

Secondary flow

Shear

Shear compliance

Shear modulus

Shear rate

Shear strain

Shear stress

Shear-thickening

Shear-thinning

Shear viscosity

Simple shear

Soft solid

Glossary o rheological terms

Synonym of shear modulus.

The components o flow in a plane orthogonal to the
main direction of flow.

(1) The movement of a layer of material relative to
paralel adjacent layers.
(2) An abbreviation of shear strain.

The elastic shear strain divided by the corresponding
shear stress. J Pa™ !,

The shear stress divided by the corresponding elastic
shear strain. Also known as rigidity modulus. G Pa.

The change of shear strain per unit time. y s™".

Relativedeformation in shear; term often abbreviated to
shear. y.

The component of stress paralel to (tangential to) the
area considered. o Pa.

The increase of viscosity with increasing rate of shear in
a steady shear flow.

The reduction of viscosity with increasing rate o shear
in a steady shear flow.

Synonym of apparent viscosity.

A shear caused by the paralée relative displacement of
paralel planes (see viscometric flow).

A descriptive term for a material exhibiting plastic
behaviour.



Specific viscosity

Spinnability

Steady flow

Storage compliance

Storage modulus

Stored energy

Strain

Strain energy

Stress

Stress rel axation

Stress tensor
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The difference between the viscosity of a solution or
dispersion and that o the solvent or continuous phase,
divided by the viscosity of the solvent or continuous
phase. 7.

The capacity of aliquid to form stable extended threads.

A flow in which the velocity at every point does not vary
with time.

That part of the (shear) strain that isin phase with the
(shear) stress divided by the stress under sinusoida
conditions. J' (for shear) Pa-'".

That part o the (shear) stress that isin phase with the
(shear) strain divided by the strain under sinusoida
conditions. G' (for shear) Pa.

Synonym o strain energy.

The measurement of deformation relative to a reference
configuration o length, area or volume. Also called
relative deformation.

The energy stored in a material (per unit volume) by the
elastic strain. Also called elastic energy. Jm 2.

A force per unit area. Pa.

The decrease of (shear) stress on the cessation of steady
(shear) flow, usually when the stress in the original
steady (shear) flow has reached equilibrium.

A matrix of the shear stress and normal stress compo-
nents representing the state o stress at a point in a
body. o;, Pa
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Taylor number

Taylor vortices

Tension

Tension-thickening

Tension-thinning

Thixotropy

Time-temperature
superposition

Trouton ratio

Trouton viscosity

Turbulence

Veocity gradient

Glossary of rheological terms

A dimensionless group associated with viscous instabili-
tiesin circular Couette flow, the value of which depends
on the kinematic viscosity and on the radii and velocities
o the cylinders.

The secondary flow consisting of ring-like cell vortices
associated with an instability in circular Couette flow
when the Taylor number exceeds a certain vaue.

A force norma to the surface on which it acts and
directed outwards from the body. N.

An increase in extensional viscosity with increasing rate
o strain in a steady extensional flow.

A decrease in extensional viscosity with increasing rate
o strain in a steady extensional flow.

A decrease of the apparent viscosity under constant
shear stress or shear rate, followed by a gradual recovery
when the stress or shear rate is removed. The effect is
time-dependent.

The scaling of the results of shear strain experiments
carried out at different temperatures to fit onto a single
curve.

The ratio of extensional to shear viscosities.

Synonym of extensional viscosity.

A condition o flow in which the velocity components
show random variation.

The derivative of the velocity of a fluid element with

respect to a space coordinate. s .



Viscoelastic(ity)

Viscometer

Viscometric flow

Viscosity

Viscosity ratio

Voigt model

Weissenberg effect

Weissenberg number

Yield stress

Young's modulus
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Having both viscous and elastic properties. This term is
sometimes restricted to solids.

An instrument for the measurement of viscosity.

A laminar flow which is equivalent to a steady simple-
shear flow. Such a flow is determined by a maximum of
three material functions: the viscosity function and two
normal stress functions.

(D Qudlitatively, the property o a material to resist
deformation increasingly with increasing rate of de-
formation.

(2) Quantitatively, a measure of this property, defined
as the shear stress divided by the rate of shear in
steady simple-shear flow. Often used synonymoudly
with apparent viscosity,n Pa.s.

Synonym of relative viscosity.
Synonym o Kelvin modd.

An effect found in non-Newtonian fluids manifested, for
example, in the climbing of the fluid up a rotating rod
dipping into it. A normal stress effect.

The product o the relaxation time, or some other
characteristic time of a material, and the rate of shear of
the flow. W..

The stress corresponding to the transition from elastic to
plastic deformation. o, Pa.

The extensional (tensile) stress divided by the corre -
sponding extensional strain of an elastic material, mea
sured in uniaxial extension. E Pa.
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SUBJECT INDEX

(Numbers in itdics refer to entries in the

Glossary

Abmpt contractions, flow into, 10, 88
Absorption of suspending phase, 127
Accuracy of measurement

in rheometers, 59
Activation energy, 132
Adsorbed molecules, 104, 117, 118, 133,

136, 137

Aggregates of particles, 116, 117
Air, viscosty of, 11
Amplitude ratio, 53
Anisotropy, flow induced, 56
Anti-migting polymer, 23
Anti-thixotropy, 99, 142, 159, 163, 165
Apparent viscosity, 159, 166
Application o creams and lotions, 13
Argon, 137
Arrhenius relationship, 13
Asphalt, 1
Asymmetric particles, suspensions of, 124
Atmospheric pressure, 67

(see isotropic pressure)
Atomisation, shear rate during, 13
Attraction between the particles, 116
Automotive oil grade number, 113

Bagley correction, 33, 87
Ball-point pen irk

power-law parameters, 22
Bdloon inflation, 76

(see biaxial flow)
Bead-spring (necklace) model, 106, 107
Bentonite (Supergdl) clay, 118, 133
Biaxial extensona flow, 76, 86
Bicycle ail viscosity, 11
Bifurcation, 157
Binary particle-size fraction, 122
Binding analysis

orifice flow for, 88

ie. pp 159 - 169 )

Bingham

eguation, 20

model, 20, 21, 133, 159

plastic, 16, 17

plot, 20
Biologica materials, rheology of, 159
Biorheology, 3, 159
Biotechnology, 3
Bitumen, viscosity of, 11
Block copolymers, 137
Blood viscosity, 19, 115, 135
Blood flow, shear rate during, 13
Blow moulding, 112
Body-centred cubic packing, 120
Boger fluid, description of, 59, 100
Boltzmann’s principle, 38, 45
Bouncing putty, $
Boundary conditions, 141
B.P.

(Hyvis 07), 61

(Hyvis 30), 59

(see polyisobutylene)
Bridging flocculation, 137
British Society o Rheology, 1
Brookfield viscometer, 26
Brownian (thermal) randomising force,

116, 117, 119

Brushing, shear rate during, 13
Bueche treatment, 107
Burgers model, 43

Cacium carbonate blends, 131
Calendering

importance of extensiona flow, 79
Calibration of viscometers, 25
Canonica forms

congtitutive equation of, 154

mechanical models of, 43, 44

185
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Capillary
flow, 14
rheometer, 87
viscometer, 32
on-line version, 35
Umstatter, 18
Carbon black, polymer melts in, 104
Carbopol solution
Sisko modd use of, 22
Carreau model, 18
Cauchy-Green tensor, 147, 148
Cement, 115
Chain branching
influence of, 104
prevention of crystallisation by, 102
Chain rigidity, influence of, 104
Characteristic time, 161, 169
Characteristic time of
lubricating oils, 5
Maxwel model, 48
polymer melts, 6
water, 5
Chemica cross linking, 97
Chemica process industries, 1
Chewing, shear rate during, 13
Chlorine, 137
Chocolate, molten
power law parameters of, 22
Circular Couette flow, 65, 71, 168
Classification of rheological behaviour, 5
Clay and sogp suspensions, 119
Clay particles, edgefface atiraction, 116
Clay slurries, (deflocculated), 23
Clays, 131
Co-axial cylinders, 160
Cod durries, 115
Coating
dip, 13
drainage during, 13
high speed, 13
Codefonnational derivative, 146
Coefficient of viscosity, 161
Coiled chain, polymer structure, 25
Coleman and Noll theory, 148
Colloidal
contribution to viscosity, 116, 131
forces, 117
interactions
temperature sensitivity of, 25
liquids
highly elastic, viscoelasticity in, 25
inelastic, thixotropy in, 24

extensiona viscosity of, 95
Complex
compliance, 49, 159, 163
modulus, 46, 50, 51, 160, 161
viscosity, 48, 160
Complex flow problems, solution of, 156
Compliance, 160
complex, 159
loss, 159
shear, 159
storage, 159
Computationa fluid dynamics, 9
Computer modelling, 121
Computer simulation
suspension rheology of, 137, 138, 139
Concentrated suspensions, 115, 119
Concentric cylinder
rheometer, 52
Taylor vortices in, 29
viscometer, 14
narrow-gap, 27
on-line, 35
wide-gap, 28
Cone-and-plate
errors, 67
rheometer, 52, 65
viscometer, 14, 30
Ferranti-Shirley, 18
normal stress measurement, 65
Confectionery, 13
Consistency, definition and units of, 19,
160
Constant strain relaxation tests, 51
Constant stress
creep tests, 51
extensiona viscosity from, 84
rheometer, 52
Deer, 27
viscometer, 17
Condtitutive equations, 9, 10, 80, 107,
109, 141, 143, 149, 150, 152,
155, 156, 160, 161, 165
canonica form of, 154
differential, 145
integral, 151
isotropic pressure in, 8
dow flow, 56
Congtitutive
model, 153, 156
theory, 149
Contact adhesives, 3
Continuity, equation of, 141



Continuous phase viscosity, 123, 126
role in suspensions, 25

Continuum
theology, 160
mechanics, 6, 7, 10, 56, 80, 141,

142, 145, 14

Contraction flow, 10, 77, 87, 83

extensiona viscosity from, 98
Contravariant

metric tensor, 146

suffices, 143
Contraves Viscometer, 27
Controlled strain experiment

extensiona viscosity from, 82
Coordinate system

convected, 144, 145, 146

fixed laboratory, 146
Corotational Oldroyd modd, 154, 155
Couette

circular, 160, 168

flow, 152

plane, 160
Cox-Men. rule, 72, 73, 98, 99, 111
Creaming, 127, 137, 160
Creams, application of, 13
Creep tests, 18, 51, 160
Critical shear rate, 128
Cross moddl, 18 19, 20
Cross-links, 108
Crowding effect, 121
Crude oil reservoir, 113
CTA-sal,, 23

(see surfactant solution)

D1 polymer solution, 72
B polymer solution, 73
Dashpot, 40, 42, 155, 160
Deborah number, 5, 6, 161
Deflocculated suspensions, 23, 116
Deformation history, 145, 161
Depletion flocculation, 137
Detergents, v, 25
Di-(2-ethylhexyl)sebacate, 15
Die swdll, 62, 63, 161

negative, liquid crystas in, 106
Differential congtitutive equation, 144,

145, 153 155, 1%6

Digital computers, 156
Dilatancy, 16, 161
Dilute

emulsions, 42

polymer solutions, 75, 99

suupensions, 120
solid eastic spheres, 42
Dip coating, 13
Disc impellers, 63
Dispersed phase concentration, 123
Dispersion stabilisers, 137
Displacement fluid, 114
Displacement functions, 144
Distribution function
relaxation times of, 45
Doi-Edwards model/theory, 109, 156
Doi-Edwards-de Gennes
tube concept, 100
Double-layer thickness, 132
Drag reduction in turbulent flow, 79
Drainage
toilet bleaches, 13
coating, 13
painting, 13
Drilling fluids, viscosity, 15 115
Droplet
breakup, 1%
stretching
extensiond viscosity from, 89
Dumbell modd, 107
Dynamic viscosity, 38, 48, 53, 160, 161,
162
Cox-Merz rule in, 9
Dynamic rigidity, 47, 48, 53, 71, 72,
134, 161
Cox-Merz rule in, 99

Edge effects in rtheometry, 65, 68
Edgefface attraction, clay particles, 116
Effective phase volume, 133
Einstein's equation, 119, 136
Elastic
effects, 134
liquid mixing in, 63
energy, 161, 167
liquids, 3, 6, 161
complex flows of, 9, 10, 156
modulus, 105, 161
recovery, 106
shear strain, 166
solid, 159, 163
Elasticity modulus, 45
Elastico-viscous, 6, 161
Electrostatic effects, 116:118 131, 132
Ellis modd, 126
Elongational viscosity, 161, 162
(see extensional viscosity)
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Emulsions, 16, 75, 115, 135, 136, 152
dilute, 42
droplets in, 56
manufacture, 136
stabilisers, 137
silicone oil in water, 136
wide-particle-size, 136
End effects in viscometers, 28
Energy dissipation, rate of, 14
Engineering applications
use o Bingham model, 21
Enhanced ail recovery (EOR), 78, 113
Entanglements, 98, 103, 108
(see intermolecular associations)
Entrance correction
extensiond viscosity, 33
Entropic
repulsion, 116, 137
forces, 132
polymeric systems, 56
springs, 106
Equation
of continuity, 141
of date (theological), 148, 160, 161
Etymology of rhwlogy, 1
Eulerian, 145
steadiness, 54, 85
Everyday time-scale, 4
Exit effects in pipe-flow, 3
Exit-pressure measurement technique, 70
Extensional flow, 9, 114, 129, 153 161,
168
biaxial, 76, 86
planar, 77
steady, 168
strain, 162
strain rate, 75, 162
uniaxial, 16
Extensional viscosity, 75, 112, 114, 155,
161, 162, 168
biaxial, 77
planar, 77
uniaxia, 75
(see elongationa viscosity)
Extensional viscosity from
congtant stress devices, 84
contraction flow, 98
controlled strain rate experiment, 82
controlled stress experiment, 82
droplet-stretching, 89
fibre spinning, 84, 8
homogeneous stretching method, 83

open-syphon method, 89
opposing-jet techniques, 89
radia filament elongation, 89
stagnation-point devices, 8
triple-jet technique, 89
Extensional viscosity of
HDPE, 90
JUPAC A LDPE, 91
LDPE, 90
Phan Thien and Tanner modd, 81
polyacrylamide, 95
1175 grade, 92
E10 grade, 93
polyethylene oxide WSR 301 grade, %5
polystyrene, 90
suspensions o dender particles, 82
xanthan gum, 93
Extra stress tensor, 143, 162
Extraction of oil, 113
Extrusion, 13, 63, 112, 113
shear rates in, 13

Fabric conditioner
power-law parameters of, 22
Sisko modd use of, 22
Face-centred cubic
packing of particles, 120, 13
Fading memory, 151
Falling-ball viscometer, 26
Farris effect, 122
FENE-dumbell modd, 108
Fenanti-Shirley viscometer, 27
Fibre spinning, 153
and extensiona viscosity, 77, 84, 85
filament-necking imperfection in. 78
Fibres, 112
Film blowing, 112
Finger tensor, 148
First norma stress difference, 55, 57,
59, 98, 99, 107, 111, 1%
First (lower) Newtonian region, 16, 99,
115
Flamethrowers, 3
Flocculation, 116, 119, 121, 137
bridging, 137
depletion, 137
Flocs, 117, 121, 133, 137
FHow
birefringence, 9, 65, 162
classification, 156
curve, the, 162
induced anisotropy, 56



induced structures, 119, 138
through contractions, 10, 112
Fluid mechanics
Newtonian, 3
non-Newtonian, 141, 149, 151
Fluid memory, 142, 143
Flush-mounted transducers, 65, 68, 70,
71
Foodstuffs, 3, 115
Forced oscillation testing, 53
Ford-cup viscometer, 26
Formulation principles, 142, 144
Four-roll ml, %
Fracturing of polymers, 101
Frame indifference, 143
Free oscillation/vibration testing, 53
Free volume, 101
Functional analysis, 7, 148

Gap setting errors in viscometers, 31
Gap width, importance of, 14
Gasoline engines, lubrication in, 13
G, rule, use of, 98
Gear teeth, flow between, 5
Gelatine, 104
Gels, yidd stress in, 17, 105
Genera integral representation, 46, 48
Generalised
Kelvin model, 43
Maxwell model, 43
Newtonian model, 149
Giesekus model, 155
Giesekus-Bird theories, 107, 108
Glass
plate and rod suspensions, 125
processing of, 13
viscosity of, 11
Glass-fibre suspensions, 124, 125
Glass forming polymers, 101
Glass transition
and free volume, 101
and latent-heat, 101
in liquid-state theories, 101
polymers in, 101
temperature of
high density polyethylene, 101
low density polyethylene, 101
nylon-66, 101
polyethylene terephthalate, 101
polystyrene, 101
Glycerine, 2
(sec aso glyceral)
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Glyceral, viscosity of, 11
Golden syrup, viscosity of, 11
Greases, 12, 20, 128
Green-Rivlin fluids, 150

Ground gypsum suspensions, 125
Gum arabic, 137

Haake viscometer, 18
Hagenbach and Couette formula, 33
HDPE, extensiona viscosity of, 90
(see high-density polyethylene)
Heat-sensitive polymers, 112
Heat-transfer
pipe-flow in, 34
viscometers in, 14
Hencky strain
definition of, 82

largest used, 83
Hierarchy

equations, 56, 151

model, 156

High Weissenberg-number problem, 156
High density polyethylene
glass trandtion temperamre of, 101
melt-processing temperature of, 101
melting point of, 101
Hole-pressure error, 33, 68, 70
Homogeneous stretching method for -
extensional viscosity, 83
Hooke model, 40, 162
Hooke's law 3 162
Hookean elastic responsg, 2, 3 5, 6,
37, 39, 52
Hoop stress in rod-climbing, 60
HPBL equations, 71
Hydrodynamic
forces, 116
lubrication, 113
resistance, 137

Ice cream, yield stress in, 17
Independent-alignment assumption, 109,
156
Indicial notation, 7
Industrial process modelling, 9
Industrial shop floor viscometers, 26
Inelastic non-Newtonian fluids, 24, 114,
149
definition of, 55
Inert fillers, 137
Inertia
in rheometry, 51
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Inertia (cont)
in pipe-flow, 33
Injection moulding, 112
Integral
equations, 143, 151, 155
expansions, 152
formulation, 152
Interfacia effects, 42, 113
Interna friction, 2
Intramolecular forces and
viscoelagtic phenomena, 106
Intringic viscosity, 103, 104, 121, 123,
162
Isotropic pressure, 143, 162
condtitutive eguations in, 8
IUPAC A LDPE sample, 82
extensiona viscosity of, 91

Jeffreys modd, 42, 43, 152
Jet-thrust technique, 63, 70
Johnson-Segalman modd, 108, 154
Journa bearings, 113

Judges, Book of, 5

Kaolin in medicines, 114

KBKZ modd, 109, 155

Kelvin moddl, 39, 40, 41, 43, 44, 162,
165

Kernd functions, 152

Kinematic viscosity, 161, 162

Kinetic theories, 106-108

Krieger variable, 126

Krieger-Dougherty equation, 125, 132

Kronecker delta, 143

Lagrangian steadiness, 54
Laterite suspensions, 125
Latices, 125, 126, 130
LDPE, extensional viscosity of, 90
(see low-density polyethylene)
Lennard-Jones interactions, 137
Leonov model, 154, 155
Levdling effects, 13
Light diffraction, 119
Linear
stability analyses, 156
viscoelastic behaviour, 4 37, 46, 49,
107
datic and dynamic, 51
viscoelasticity, 50, 143, 163
genera differential equation, 38,
47, 144

Liquid
definition of, 6
Newtonian, 5
Liquid A, 151
Liquid B, 155
Liquid abrasive cleaners, 114, 115
Liquid crystd polymers, 22, 56, 105
Liquid detergents, 3
Liquid-like
behaviour, 6
material, 52
solids, 4
Liquid-state theories, 101
Lodge
rubber-like liquid, 108, 155
stressmeter, 70
viscometer version of, 35
London-van der Waals attraction, 116
Loss
angle, 49, 163
compliance, 163
modulus, 47, 163
Lotions, application of, 13
Low density polyethylene
glass transition temperature of, 101
melt-processing temperature of, 101
melting point of, 101
Lower Newtonian region, 16
Lubricants, 1
high-shear rete viscosity, 38

viscosity / pressure dependence of, 15

Lubricated-die rheometer, 86
Lubricating grease, 118

yield stress in, 17
Lubricating oils, 6

characteristic time of, 5

temperature dependence of, 14
Lubrication, 113

approximation, 112

high temperature, 25

shear rate during, 13

Macrorheology, 160, 163
Margarine, yield stress in, 17
Master curves, 111
Maximum packing fraction
or phase volume, 120, 121, 123
Maxwell model, 39, 41, 42, 47, 144,
155, 163, 165
characteristic natural time, 48
generalised, 43
oscillatory shear behaviour, 49



upper-convected, 107, 154
Maxwell orthogonal rheometer, 54
Maxwell's elastic fluid, 3
Measurement accuracy

theometry in, 68

viscometry in, 13
Mechanica models, 40, 162

canonical forms of, 43, 44
Medicines, 13, 115
Melt

flow instabilities, 113

fracture, 113, 163
Meélt-processing temperature of

high density polyethylene, 101

low density polyethylene, 101

nylon-66, 101

polyethylene terephthalate, 101

polystyrene, 101
Melting point of

high density polyethylene, 101

low density polyethylene, 101

nylon-66, 101

polyethylene terephthalate, 101
Memory fluid, 6, 161, 163
Method of reduced variables, 109
Microrheology, 163
Microstructure, 141
Milling of pigments, 13
Minimum-energy state, molecules in, 106
Mixing, shear rate during, 13 112
Modulus, 163

complex, 160, 161

loss, 160

rigidity, 166

shear, 160

storage, 160
Molecular

adsorption, 137

models and extensiona flow, 81

structure, 10

theories, 106
Molecular weight

distribution, 25, 63

influence of, 104
viscosity relationship
polybutadiene, 102
polydimethylsiloxane, 102
polymethylmethacrylate, 102
polystyrene, 102
Mooney system

viscometers based on, 28

Motions
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with constant stretch history, 152
Multigrade oils, 3, 25, 71, 113

Naphthenic minera oil, 15
Narrow-gap approximation, 29
Natural gums, 114
Navier-Stokes equations, 2, 3, 6,
163, 164
Nearly viscometric flows, 152
Necking, 163
Necklace model, 106, 107
Negative die swell and normal stress
difference, 106
Negative normal stress effect
inertial origin of, 67
Negative thixotropy, 24, 159, 163
(see also anti-thixotropy)
NEMD calculation, 138, 139
Network models, 108
Newtonian
behaviour, 2, 3 5 6, 8 11, 15 65
dashpot, 40, 155
equations, 137
fluid mechanics, 3
model, 164
generalised, 149, 156
standardised |iquids, 25
No-dlip hypothesis, 151
Non-Newtonian, 6, 16
flow, 156
fluid mechanics, 141, 149, 151
fluids, 164, 169
Non-drip paint, 3 4
Non-equilibrium molecular dynamics
(NEMD), 137
Non-linear viscoelasticity, 37
Non-linear cross-section pipe flow, 64
Non-linearity, importance of, 4
Non-settling suspensions, 20
Norma force, 164
measurement USNg
cone-and-plate flow, 65
flush-mounted transducers, 65
pump, 62
Normal stress difference, 8, 9, 15, 55,
113, 138, 141, 149, 150, 153,
164, 167, 169
coefficients, 55, 108, 169
first, 55, 56, 57, 59, 98, 99, 107, 108
negative, 105
second, 55, 56, 57, 59, 70, 107
thermodynamic origin, 57
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Normal stress distribution, 149
tenson along streamlines
equivalence, 59
Normal dress effects in mixing. 63
Nommalised frequency, 48
(see reduced frequency)
Numericad simulation, 10, 147, 156, 157
Nylon-66
glass trangition temperature of, 101
melt-processing temperature of, 101
melting point of, 101

Optical anisotropy, 162
Qil

bicycle, viscosity of, 11

lubricating

temperature dependence of, 12

multi-grade, 25, 71

olive, viscosity of, 11
Oldroyd models, 107, 152, 154, 155
On-line viscometers, 35
Onset of

shear-thickening, 130

met flow instabilities, 113
Open tilted trough technique, 71
Open-syphon effect with

polyethylene oxide, 94, 95
Open-syphon method

extensiond viscosity from, 89
Oppanol

(B50), 58

(B200), 60, 61, 72

(see polyisobutylene)
Opposing-jet techniques

extensiond viscosity from, 89
Optical diffraction system, 128
Orientation vector, liquid crystals in, 105
Orifice flow, 77, 87

Binding andysis for, 88
Oscillatory shear, 47, 153

high frequency measurements, 103

Maxwell modd, 49

Rheogoniometer for, 52

small amplitude, 9, 46, 71, 107
Osmotic pressure, 138, 139
Overshoot. 164

Packing fraction, maximum, 135
Painting

drainage during, 13

shear rae during, 13
Paints, v, 1, 13 13 114, 115 133

Paper coating

importance of extensional flow in, 79

shear rate during, 13
Parallel diding plate rheometer, 65
Parallel-plate viscometer, 31
Particle

asymmetry, 123

density, 116

hydrodynamic redistribution, 128

layers, 119

migration, 128

overall attraction between, 133

polyhedral, 135

shape, 120

size, 136

surfaces, polymer adsorbed onto, 132
Particle-filled polymer gel, 105
Particle-particle interaction, 137
Particle-size distribution, 120, 121, 128,

131

Pastes, yield stress in, 17
Péclet number (modified), 126
Permanent cross-links, 108
Perturbation

analyses, 156

parameter, 156
Phan Thien and Tanner modd, 154, 155

extensiona viscosity of, 81
Pharmaceutical industry, 3
Phase separation, 127
Phase changes

detergent based liquids, 25
Phase lag, 53
Phase volume, 116

effect of, 127

effective, 133

maximum, 135

(see packing fraction)
Phenomenologica rheology, 160
Photo-degradation

anti-misting polymer of, 23
Physical chemistry, 6
Pigment

dispersion, 117

milling of, 13
Pip: flow

entrance effects in, 33

exit effects in, 33

heat-transfer in, 34

inertial losses in, 33

laminar, Newtonian, 32

non-linear cross-section pipe, 64



power-law liquids, flow in, 32, 34
Rabinowitsch correction, 32
scale-up of, 33
shear rate during, 13
shear-stress in, 32
thixotropic material in, 25
velocity profile in, 34
viscous losses in, 3B
Plane Couette flow, 65, 160
Plastic
behaviour, 166
deformation, 169
viscosity, 164
Plastic(ity), 164
Plastic-rigid solid, 5
Plastics, v, 1
Plastics-processing industry, 3
Plastometer, 18
Poiseuille
equation, 32
flow, 70, 87, 152, 164
Polariszbility, 116
Polarity
influence of in, 104
Poly-p-benzamide, 105
Polyacrylamide, 62, 114, 114, 137
1175 grade, 94
aqueous solution viscosity, 19
E10 grade, 57, 94
extensiond viscosity of, 92, 93, 95
maltose syrup/water base, 100
(see Boger fluid)
tension thickening, 96
Polybutadiene
in dekalin, 91
mol. weight/viscosity relationship, 102
Polybutene in polyisobutylene, 61
Polydimethylsiloxane, 102
Polydispersity, influence of, 122
Polyethylene oxide
open-syphon effect with, 94
extensiond viscosity of
WER 301 grade, %
Polyethylene terephthalate
glass trandtion temperature of, 101
melt-processing temperature of, 101
melting point of, 101
Polyhedral paricles, 135
Polyisobutylene in
dekalin, 58, 60, 72
kerosene/polybutene, 59, 100
polybutene, 61
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Polymer blends
influence on viscosity, 104
Polymer extrudate, 163
Polymer flooding, 78, 114
(see enhanced oil recovery)
Polymer gels, 104
Polymer liquid crystal
Sisko modd use of, 22
Polymer melts, 57, 68, 97
carbon black in, 104
characteristic time of, 6
handling of, 13
power-law parameters of, 22
viscosity of, 11
Polymer processing, 6, 111
importance of extensiona flow in, 77
Polymer rheology, 1
effect of molecular weight on, 102
effect of temperature on, 101
from molecular theories, 106
Polymer solutions, 16, 57, 97, 155
dilute, 75
Polymer structure (coiled chains), 25
Polymeric liquid crystals, 104
Polymers
adsorbed onto particle surfaces, 132
as thickeners, 136
crystallisation and freezing, 101
engine lubricants, 113
extrusion of, 13
fracturing, 101
glass forming, 101
liquid crystal formation, 105
solubility of, 25
Polymethylmethacrylate (PMMA), 102
Polypropylene
copolymer, 57
isotactic
glass transition temperature of, 101
melting point of, 101
melt-processing temperature of, 101
Polysaccharide-type polymers, 114
Polystyrene, 90
a non-crystallising polymer, 101
benzene, 14
extensiona viscosity of, 90
glass transition temperature of, 101
melt-processing temperature of, 101
modes of motion in chains of, 103
mol. weight/viscosity relationship, 102
Pores of sedimentary rock, 113
Positive dissipation principle, 145
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Post-extrusion swelling, 62, 161
(see die swell)
Powders, sedimentation in liquids, 13
Power-law
index, 129
definition of, 19
liquids in pipe-flow, 32-4
model, 19, 20, 21, 23, 28, 58, 112,
164
shear-thinning region, 115
Power-law parameters of
ball-point pen irk, 22
fabric conditioner, 22
polymer melts, 22
synovial fluid, 22
Pressure
concept of, 7
dependence of viscosity on, 14
measurement with
flush-mounted transducers, 68
Prevention of crystallisation by
chain branching, 102
rapid cooling, 102
Principle of
fading memory, 145
material objectivity, 143
Printing inks, v, 13, 115, 133
Process control, 9
modelling, 112
time, 161
Processing of glass, 13
Ps.. 20
extensiona viscosity of, 90
(see polystyrene)
Pseudo-crystal/lattice, 117
Pseudoplasticity, 16, 164
(see shear thinning)
Pumping, shear rate during, 13
Pure shear, 77
(see planar extensional flow)
Ruitty, bouncing, 5
PVC organosol, 134

Quadlity control, 9

use ¢ viscoelastic parameters in, 37
Quartz grain suspensions, 125
QWERTY keyboard, 5

Rabinowitsch correction, pipe-flow in, 32
Racemic poly-y-benzyl glutamate, 22
Radial distribution function, 125

Radia filament elongation

extensiond viscosity from, 89
Random
close packing, 120
disordered state, 117
Rapid cooling
prevention of crystallisation by, 102
Rate of energy dissipation, 14
Rate-of-shear, 165
Rate-of-gtrain tensor, 143
Recoverable shear, 58
Reduced
shear rae, 111
variables method, 109
viscosity, 162, 165
Reentrant comers, 151, 157
Reiner-Rivlin fluid, 55, 149
Relative
deformation, 165
viscosity, 125, 165, 169
Relaxation
function, 45, 50, 51
spectrum, 43, 45, 50, 51
tests at constant strain, 51
time, 41, 45, 51, 52, 109, 161, 165,
169
Reptation (models), 108, 109
Repulsion, 116, 131
entropic, 137
Rest structures in suspensions, 117
Retardation time, 40, 154, 165
Retarded-motion expansion, 151
Reynolds number, 165
Rheogoniometer, 98, 165
oscillatory methods, 52
Weissenberg, 59
Rheograms, 165
Rheologica behaviour, classification of, 5
Rheological equations of state, 10, 141,
48, 160, 165
formulation of, 144
Rheology, 113, 165
continuum, 160
definition, v
etymology, 1
mathematical description of, 5
phenomenological, 160
suspensions, 115
theoretical, 141
time-scale in, 5
Rheometer, 165
accuracy of measurement, 59
capillary, 87



concentric cylinder, 52

cone-and-plate, 52, 65

congtant stress, 27, 52

|ubricated-converging-flow, 86

lubricated-die, 86

Maxwell orthogonal, 54

pardlel diding plate, 65

Rheometrics, 27

spin-ling, 85, 98

torsional balance, 32

Weissenberg, 27
Rheometry, 9

edge effects in, 638

inertia in, 51

measurement accuracy in, 68

role of, 9

Seed of sound in, 51

surface tension in, 68
Rheopexy, 159, 165
Ribbons, 119
Rigidity modulus, 2 4, 38, 166
Rising-bubble viscometer, 26
Rivlin-Ericksen

fluid, 150

tensors, 148, 150
Rod~limbing effect, 60, 67
Rods, suspensions of, 112, 124
Roll-wave mation in turbulent flow, 79
Rotameter used as a viscometer, 35
Rotating bodies, flow caused by, 156
Rotational viscometers, 26
Rouse-Zimm model, 106, 107
Rubber wvuilcanisation, 98
Rubbing, shear rate during, 13

Sample changing in viscometers, 31
Scale-up of pipe-flow, 33
Second nommal stress difference, 55-59,
70, 155
coefficient, 108
Second (upper) Newtonian region, 16, 99
Second order model, 151, 154
extensiond viscosity from, 81
simple fluid version, 71
viscoelasticity from, 152
Secondary flow, 31, 166, 168
mistaken for shear-thickening, 31
Secondary recovery process, 113
Sedimentation of powders, 13, 127, 137
Self-diffusion, 132
Semi-crystalline solid polymers
shear modulus of, 101

195

Semi-rigid polymer
extensiond viscosity of, 93
Separation processes, 137
Servo-mechanism for gap-maintenance, 67
Shark-skin, 113
Shear, 166
compliance, 159, 166
defition, 2
fracture, 68
modulus, 50, 160, 166
o metals, 101
o solid polymers, 101
of unhardened rubber, 101
oscillatory, 153
simple, 153, 155, 160
small-amplitude oscillatory, 151
Strain, 166
stress, 166
in pipe-flow, 32
viscosity, 159, 166
Shear rate, 166
critical, 128
definition, 2
Shear rate during
atomisation, 13
blood flow, 13
brushing, 13
chewing, 13
extrusion, 13
lubrication, 13
mixing, 13
painting, 13
paper coating, 13
pipe flow, 13
pumping, 13
rubbing, 13
spraying, 13
stirring, 13
swallowing, 13
Shear thinning, 4, 16, 119, 164, 166
Shear thickening, 16, 23, 128, 129, 130,
, 138, 161, 166
dilute polymer solutions in, 99
heat-transfer
in pipe-flow, 34
onset of, 130
region, 129
secondary flow mistaken as, 31
surfactant solution for, 23
Shift factors, 110, 111
Sl units, viscosity, 2, 12
Silica dispersions, 117



Silicone, 5
Simple
cubic packing, 120
fluids, 148, 151
hypothesis, 150
theometrical flows, 141, 152
~ shear, 160, 166
Sisko modd, 19, 20, 22
carbopol solution for, 22
fabric softener for, 22
polymer liquid crystd for, 22
yogurt for, 22
Slit flow, 14, 35, 70
Sow flow, 45, 56, 71, 150, 156
Sowly varying, 151
Sumping d grease, 20
Smal-amplitude oscillatory flow, 9, 46,
71, 99, 107, 134, 151
Smoothness assumptions, 151
Soap crystas, 118
Soft solids, 105, 166
Solid
definition of, 6
eadtic, 159
Hookean dadtic, 5
plastic-rigid, 5
Solid-particle dispersons, 135
Solid-like
behaviour, 6
liquids, 4
materias
oecimen preparation, 52
testing of, 53
Solids, 4
Hookean dadtic, 3
liquid-like, 4
Solubility of polymers, 25
Solvent/polymer interactions, 104
Specific viscosity, 165, 167
Specimen preparation of
solid-like materias, 52
Spectrum of relaxation frequencies, 45
Speed of sound in rheometry, 51
Spheres, 124, 125
Spin-line technique (rheometer), 85, 86,

91-94, 98
Spinnability, 77, 167
spinning, 112

Spraying, shear rate during, 13
Spring-dashpot models, 42

canonical forms of, 44
Springs in mechanicd models in, 40

Squeeze film flow, lubricated, 76
(see biaxia flow)
Stabilisers for
dispersions, 137
emulsions, 137
Stability anadyses (linear), 156
stagnation-point devices
extensona viscosity from, 89
Standardised liquids (Newtonian), 25
Starch suspendgions, 129
Startup of shear flow, 108
Statisticd mechanics, 6
Steadiness
Eulerian definition of, 54
Lagrangian definition of, 54
Steady flow, 167
Eulerian, 85
extensonal, 168
shear, 149, 150, 153, 155, 169
Steel (modulus), 5
Steric repulsion, 117
Stirring, shear ate during, 13
Stokes
drag law, 20
eguation, 106
Stone-Weierstrass theorem, 150
Storage
compliance, 159, 167
modulus, 47, 160, 167
Stored energy, 167
Strain
definition of, 2, 167
energy, 161, 167
hardening, 89
Stress
relaxation, 167
overshoot
a dartup o shear flow, 108
tensor, 138, 152, 162, 165, 167
extra, 143
trace o the, 139
Stretching o thin sheets, 76
(see biaxia flow
String-of-pearls structure, 117
Stringiness, 114
Strings of molecules, 139
Structural engineering, 5
Suction device, spin-line technique in, 86
Superposition principle, 38, 45
(see Boltzmann’s principle)
Surface tension
theometry in, 68



and levelling, 13
Surfactant solution

shear-thickening behaviour, 23
Suspensions, 75

asymmetric particles, 124

fine particles, 114

flocculated, 133

non-settling, 20

dender particles

(extensional viscosity), 82

s0lid eagtic spheres of, 42

starch, 129

sub-micron, 126

truncated cones for, 31

very dilute, 152

viscometers for, 28

viscogity of, 17, 116
Swallowing, shear rate during, 13
Swelling, post-extrusion, 161

(see die swell)
Symmetric

contravariant tensor, 146

covanant tensor, 146
Synovia fluid

power-law parameters of, 22
Synthetic latex, Bingham plot of, 20, 21
Synthetic-fibre industry, 3

Taylor

number, 168

vortices, 168

in concentric-cylinders 29
Taylor-series expansion, 150
Temperature dependence of viscosity, 4,
12

lubricating oils, 14

colloid interactions, 25
Temporary viscosity loss, 16
Tension, 168

dong streamlines, 59

thickening, 76-78, 81, 91, 94, 168

thinning, 76, 77, 78, 91, 93, %4, 168
Tensor, 38, 146

analysis, 7, 143

vaued functional, 148
Tertiary mixtures, 122
Tertiary

or enhanced il recovery (BECR), 114
Theology, misprint for rheology, 5
Theoretical rheology, 141
Thermodynamic

equilibrium, 117

origin of norma stresses, 57
principles, 145
Thickening sauces and soups, 114, 136
Thixotropic material in pipe flow, 25
Thixotropy, 4, 24, 25, 142, 168
negative, 159
Time-dependent
frame, 143
materials, 142
Time-scde
everyday, 4
rheology, 5

Time-temperature superposition, 109, 110,

168

Titani um dioxide, 125
Toilet bleach, drainage, 13
Toothpastes, 4, 114, 137
Torsiona

balance rheometer, 32

flow, 31, 65, 68

(see pardld plate geometry)

Trace of the stress tensor, 139
Transformation rules, 146
Trandent junctions, 108
Tribology, 38
Trimodal suspensions, 123
Triple-jet technique for

extensiona viscosity, 89
Trouton

behaviour, 89

ratio, 80, 81, 94, 95 99, 100, 168

viscosity, 168
Truncated cones for suspensions, 31
Turbulence, 162, 168

drag reduction in, 79

roll-wave motion in, 79

viscometers in, 29

vortex sretching in, 79
Two-dimensiona

layering, 128, 132

structures, 125
Two-phase liquids

temperature effects, 25

Uniaxiad extensiona flow, 16

Unwvulcanized rubber, 110

Upper Newtonian plateau, 16, 99, 115
(see second Newtonian region)

Upper—convected Maxwell modd, 107,

154
Van der Waals attraction, 117
Variant suffices, 143
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Velocity
gradient, 168
profile in pipe-flow, 34
Very high frequency measurements, 103
Viscoelastic(ity), 37, 46, 51, 107, 113,
136, 149, 161, 163
definition of, 6
due to intramolecular forces, 106
linear, 4, 46, 50, 51, 55, 107, 152
second-order, 152
Viscometers, 169
Brookfield, 26
calibration, 25
capillary, 32
Umstatter type, 18
concentric cylinder, 14
narrow-gap, 27
on-line verson of, 35
wide-gap, 28
cone-and-plate, 14, 30
Ferranti-Shirley, 18
congant stress, 17
Deer type, 18
Contraves, 27
convenience, 26
definition of, 12
end effects, 28
falling-ball, Glen Creston, 26
Ferranti-Shirley, 27
for suspensions, 28
Ford-cup, 26
gap setting errors, 31
Haake, 18
heat transfer in, 14
industrial shop floor, 26
Lodge stressmeter used as, 35
Mooney system, 28
on-line, 35
parale-plate, 31
risng-bubble, 26
robustness, 26
rotameters used as, 35
rotational, 26
sample changing in, 31
secondary flows in, 31
dit, 35
torsona padld-plate, 31
turbulence in, 29
viscous hedting in, 29
Viscometnric flows, 152, 169
Viscodty, 169
apparent, 159, 166

coefficient of, 161
colloida contribution to, 131
complex, 48, 72
dynamic, 38, 48, 53, 71, 160
Cox-Merz rule use in, 9O
dongationd, 162
(see extensonad viscosty)
extensional, 161
biaxial, 77
planar, 77
uniaxia, 75
International standard of, 25
intrinsic, 103
kinematic, 161
measuring accuracy of, 13
pressure dependence of, 14
ratio, 165, 169
reduced, 162
relative, 169
shear, 11
Sl units, 12
specific, 165
temperature dependence of, 12
Trouton, 162
Viscogity o
ar, 11
bitumen, 11
glass, 11
glyceral, 11
golden syrup, 11
liquid honey, 11
polymer melts, 11
suspensions, 17
water, 11
Viscosity-Index (or VI) improvers, 113
Viscous
hegting in viscometers, 14, 29, 38, 68
losses in pipe flow, 33
Voigt modd, 39, 162, 169
(see Kévin model)
vortex
enhancement, 83
dretching in turbulent flow, 79
Vulcanisation Of rubber, 98

Wall depletion effect, 127, 128
Water, 2
characterigtic time of, 5
viscosity, 11
as Internationa standard, 25
pressure dependence of, 14
temperature sengitivity, 25



Water-clarification, 137
Water/oil interface, 113
Wave-propagation methods, 53
Weather maps, 7
Weber's dlk threads, 3
Weighing errors, 127
Weissenberg

hypothesis, 59

number, 169

definition of, 63
rheogoniometer, 27
origin of, 59

rod-climbing effect, 60, 67, 169
‘White-Metzner

modd, 14, 155

tensors, 148
Williams-Landd-Ferry

(WLF) equation, 111
Wire coating, 64
Wobbliness, 114

Xanthan gum, 94, 95, 114
agueous dispersion flow curve, 19
extensional viscosity of, 93

Yield stress, 5, 16, 17, 20, 21, 115,
133, 159, 164, 169

Yield stress of

gels, 17

ice cream, 17

lubricating greases, 17

margarine, 17

pastes, 17
Yogurt, Sisko model use of, 22
Young's modulus, 169

Zero-shear viscosity, 16
effect of molecular weight on, 103
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